Reproducible nvim completion framework benchmarks.

Overview

Nvim.Bench

Reproducible nvim completion framework benchmarks.

Runs inside Docker. Fair and balanced


Methodology

Note: for all "randomness", they are generated from the same seed for each run, and therefore "fair".

Input

tmux is used to send keys to simulate ideal human typing.

The words typed are naive tokens from parsing current document into (alphanum + "_") delimited by whitespaces and symbols.

This tokenization should work fairly well for c family of languages, which are the industry standard.

A uniform distribution of whitespaces is also generated from the same buffer.

Measurement

n keystrokes of --samples is performed.

Speed

Using --avg-word-len, --wpm and --variance, a Normal Distribution is constructed of the desired delay between keystrokes.

Data

See ./fs/data/

Modularity

Some frameworks will have by default, very little sources enabled, if any.

Other ones will come with more out of the box.

For a fair comparison: All frameworks tested will have to following enabled, on top of whatever else they come enabled by default:

  • buffer

  • lsp

  • path

The reasoning is that: 1) Almost all authors will have written these sources firsthand, and 2) they seem to be the most useful sources.

No default sources will be disabled, because users don't tend to do that.


Cool, pictures

The plots are kernel density estimations, have no idea why they fitted more than 1 curve for some plots.

I usually use R, not used to python ploting. Anyways, they are an estimate of the true probability density function.

Q0, 50, 95, 100?

Mean min, median, 1 in 20, max, respectively.

Without assuming any statistical distribution:

Q50 is a more robust measure than avg, and Q95 is a decent measure of a common bad value.


Analysis

Please keep in mind that this is purely a synthetic benchmark, which definitely is one of those need context to interpret type of things.

There is no good way to measure real speed across frameworks, raw numbers here come with big caveats.

Study design limitations

Streaming completion

Streaming completion is very good for time to first result (TTFR), but it presents us with an issue:

While the fast sources will return right away, the slower ones might never make it before the next keystroke.

This has the funny effect of removing the influence of slower sources entirely, which is disastrous for study integrity.

The mitigation is actually to set typing speed unrealistically slow, enough so that we have confidence that the LSP servers can catch up.

This is obviously not ideal.

Fast on paper != fast IRL

The most responsive frameworks are not necessarily the fastest ones, because humans still have to choose the results.

For example the streaming completion approach actually has severe trade offs infavor of faster TTFR:

Ranking

Having suboptimal ranking is BAD, it pushes work from fast machines onto slow humans.

The streaming approach has to be additive, because its too disruptive to shift existing menu items around.

Therefore it is limited to sorting only within stream batches, and to make things worse, slower batches typically contain higher quality results.

That means better results will often end up at the bottom, necessitating more work for humans.

Limiting

This is a direct consequence of limited ranking optimizations.

Because the framework have no idea how much each source will send, it has the dilemma of either sending too many results or too little.

Sending too many results in early batches from likely inferior sources will waste the users time, and sending too little will obscure potentially useful completions.

Clarity on when / if results will come in

This is a HCI thing:

Having higher quality results come in slower is likely to inadvertently train users to wait for them. This is evidently bad for input speed.

Conclusion

There is never going to be a closed form solution to "what is the fastest framework", because of the trade offs detailed above.

A toy example of a degenerate framework that returns a single fixed 👌 emoji will probably beat anything out there in terms of raw speed, but it is utterly useless.

Before you reach your own conclusion, the results of this repo must be considered alongside inextricably human measure.

Owner
i love my dog
dogs are love dogs are life
i love my dog
Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.

Sacred Every experiment is sacred Every experiment is great If an experiment is wasted God gets quite irate Sacred is a tool to help you configure, or

IDSIA 4k Jan 02, 2023
A Puzzle A Day Keep the Work Away

A Puzzle A Day Keep the Work Away No moyu again!

P4SSER8Y 5 Feb 12, 2022
Tools I'm building in order to help my investments decisions

b3-tools Tools I'm building in order to help my investments decisions. Based in the REITs I've in my personal portifolio I ran a script that scrapy th

Rafael Cassau 2 Jan 21, 2022
LinuxHelper - A collection of utilities for non-technical Linux users accessible via a GUI

Linux Helper A collection of utilities for non-technical Linux users accessible via a GUI This app is still in very early development, expect bugs and

Seth 7 Oct 03, 2022
GA SEI Unit 4 project backend for Bloom.

Grow Your OpportunitiesTM Background Watch the Bloom Intro Video At Bloom, we believe every job seeker deserves an opportunity to find meaningful work

Jonathan Herman 3 Sep 20, 2021
Simple python bot, that notifies about new manga chapters through Telegram.

Simple python bot, that notifies about new manga chapters through Telegram.

Dmitry Kopturov 1 Dec 05, 2021
Dungeon Dice Rolls is an aplication that the user can roll dices (d4, d6, d8, d10, d12, d20 and d100) and store the results in one of the 6 arrays.

Dungeon Dice Rolls is an aplication that the user can roll dices (d4, d6, d8, d10, d12, d20 and d100) and store the results in one of the 6 arrays.

Bracero 1 Dec 31, 2021
A function decorator for enforcing function signatures

A function decorator for enforcing function signatures

Emmanuel I. Obi 0 Dec 08, 2021
Used the pyautogui library to automate some processes on the computer

Pyautogui Utilizei a biblioteca pyautogui para automatizar alguns processos no c

Dheovani Xavier 1 Dec 30, 2021
Change your Windows background with this program safely & easily!

Background_Changer Table of Contents: About the Program Features Requirements Preview Credits Reach Me See Also About the Program: You can change your

Sina.f 0 Jul 14, 2022
Beatsaber for Python

beatsaber Beatsaber for Python It was automatically generated with mkpylib. If you're reading this message, it m

Shawn Presser 3 Jul 30, 2021
samples of neat code

NEAT-samples Some samples of code and config files for use with the NEAT-Python package These samples are largely copy and pasted, so if you

Harrison 50 Sep 28, 2022
Subscribe, listen and (in the future) download your favorite podcasts, quickly and easily.

Minimal Podcasts Player https://github.com/son-link/minimal-podcasts-player Subscribe, listen and (in the future) download your favorite podcasts, qui

Alfonso Saavedra 14 Nov 11, 2022
An upgraded version of extractJS

extractJS_2.0 An enhanced version of extractJS with even more functionality Features Discover JavaScript files directly from the webpage Customizable

Ali 4 Dec 21, 2022
This python application let you check for new announcements from MMLS, take attendance while your lecturer is sharing QR Code on the screen.

This python application let you check for new announcements from MMLS, take attendance while your lecturer is sharing QR Code on the screen.

wyhong3103 5 Jul 17, 2022
Utility to play with ADCS, allows to request tickets and collect information about related objects

certi Utility to play with ADCS, allows to request tickets and collect information about related objects. Basically, it's the impacket copy of Certify

Eloy 185 Dec 29, 2022
A collection of some leetcode challenges in python and JavaScript

Python and Javascript Coding Challenges Some leetcode questions I'm currently working on to open up my mind to better ways of problem solving. Impleme

Ted Ngeene 1 Dec 20, 2021
NCAR/UCAR virtual Python Tutorial Seminar Series lesson on MetPy.

The Project Pythia Python Tutorial Seminar Series continues with a lesson on MetPy on Wednesday, 2 February 2022 at 1 PM Mountain Standard Time.

Project Pythia Tutorials 6 Oct 09, 2022
Automatização completa do site https://blaze.com

PyBlaze Pyblaze possibilita o acesso a api do site blaze utilizando python, retornando os Ășltimos resultados de crashs e doubles. Agora tambĂ©m Ă© possĂ­

Cleiton Leonel 24 Dec 30, 2022
Python DSL for writing PDDL

PDDL in Python – Python DSL for writing a PDDL A minimal implementation of a DSL which allows people to write PDDL in python. Based on parsing python’

International Business Machines 21 Nov 22, 2022