SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

Overview

hexhamming

Pip Prs Github

What does it do?

This module performs a fast bitwise hamming distance of two hexadecimal strings.

This looks like:

DEADBEEF = 11011110101011011011111011101111
00000000 = 00000000000000000000000000000000
XOR      = 11011110101011011011111011101111
Hamming  = number of ones in DEADBEEF ^ 00000000 = 24

This essentially amounts to

>>> import gmpy
>>> gmpy.popcount(0xdeadbeef ^ 0x00000000)
24

except with Python strings, so

>>> import gmpy
>>> gmpy.popcount(int("deadbeef", 16) ^ int("00000000", 16))
24

A few assumptions are made and enforced:

  • this is a valid hexadecimal string (i.e., [a-fA-F0-9]+)
  • the strings are the same length
  • the strings do not begin with "0x"

Why yet another Hamming distance library?

There are a lot of fantastic (python) libraries that offer methods to calculate various edit distances, including Hamming distances: Distance, textdistance, scipy, jellyfish, etc.

In this case, I needed a hamming distance library that worked on hexadecimal strings (i.e., a Python str) and performed blazingly fast. Furthermore, I often did not care about hex strings greater than 256 bits. That length constraint is different vs all the other libraries and enabled me to explore vectorization techniques via numba, numpy, and SSE/AVX intrinsics.

Lastly, I wanted to minimize dependencies, meaning you do not need to install numpy, gmpy, cython, pypy, pythran, etc.

Eventually, after playing around with gmpy.popcount, numba.jit, pythran.run, numpy, I decided to write what I wanted in essentially raw C. At this point, I'm using raw char* and int*, so exploring re-writing this in Fortran makes little sense.

Installation

To install, ensure you have Python 2.7 or 3.4+. Run

pip install hexhamming

or to install from source

git clone https://github.com/mrecachinas/hexhamming
cd hexhamming
python setup.py install # or pip install .

If you want to contribute to hexhamming, you should install the dev dependencies

pip install -r requirements-dev.txt

and make sure the tests pass with

python -m pytest -vls .

Example

Using hexhamming is as simple as

>>> from hexhamming import hamming_distance_string
>>> hamming_distance_string("deadbeef", "00000000")
24

New in v2.0.0 : hexhamming now supports byte`s via ``hamming_distance_bytes`. You use it in the exact same way as before, except you pass in a byte string.

>>> from hexhamming import hamming_distance_bytes
>>> hamming_distance_bytes(b"\xde\xad\xbe\xef", b"\x00\x00\x00\x00")
24

Benchmark

Below is a benchmark using pytest-benchmark with hexhamming==v1.3.2 my 2020 2.0 GHz quad-core Intel Core i5 16 GB 3733 MHz LPDDR4 macOS Catalina (10.15.5) with Python 3.7.3 and Apple clang version 11.0.3 (clang-1103.0.32.62).

Name Mean (ns) Std (ns) Median (ns) Rounds Iterations
test_hamming_distance_bench_3 93.8 10.5 94.3 53268 200
test_hamming_distance_bench_3_same 94.2 15.2 94.9 102146 100
test_check_hexstrings_within_dist_bench 231.9 104.2 216.5 195122 22
test_hamming_distance_bench_256 97.5 34.1 94.0 195122 22
test_hamming_distance_bench_1000 489.8 159.4 477.5 94411 20
test_hamming_distance_bench_1000_same 497.8 87.8 496.6 18971 20
test_hamming_distance_bench_1024 509.9 299.5 506.7 18652 10
test_hamming_distance_bench_1024_same 467.4 205.9 450.4 181819 10
Owner
Michael Recachinas
Husband to @erinrecachinas, Dad, 🐶 Dad, he/him/his
Michael Recachinas
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Pragmatic AI Labs 421 Dec 31, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023