Workshop for student hackathons focused on IoT dev

Overview

Scenario: The Mutt Matcher (IoT version)

According to the World Health Organization there are more than 200 million stray dogs worldwide. The American Society for the Prevention of Cruelty to Animals estimates over 3 million dogs enter their shelters annually - about 6 dogs per minute! Anything that can reduce the time and effort to take in strays can potentially help millions of dogs every year.

Different breeds have different needs, or react differently to people, so when a stray or lost dog is found, identifying the breed can be a great help.

A Raspberry Pi with a camera

Your team has been asked by a fictional animal shelter to build a Mutt Matcher - a device to help determine the breed of a dog when it has been found. This will be an IoT (Internet of Things) device based around a Raspberry Pi with a camera, and will take a photo of the dog, and then use an image classifier Machine learning (ML) model to determine the breed, before uploading the results to a web-based IoT application.

This device will help workers and volunteers to be able to quickly detect the breed and make decisions on the best way to approach and care for the dog.

An application dashboard showing the last detected breed as a German wire pointer, as well as a pie chart of detected breeds

The animal shelter has provided a set of images for a range of dog breeds to get you started. These can be used to train the ML model using a service called Custom Vision.

Pictures of dogs

Prerequisites

Each team member will need an Azure account. With Azure for Students, you can access $100 in free credit, and a large suite of free services!

Your team should be familiar with the following:

Hardware

To complete this workshop fully, ideally you will need a Raspberry Pi (model 3 or 4), and a camera. The camera can be a Raspberry Pi Camera module, or a USB web cam.

💁 If you don't have a Raspberry Pi, you can run this workshop using a PC or Mac to simulate an IoT device, with either a built in or external webcam.

Software

Each member of your team will also need the following software installed:

Resources

A series of resources will be provided to help your team determine the appropriate steps for completion. The resources provided should provide your team with enough information to achieve each goal.

These resources include:

  • Appropriate links to documentation to learn more about the services you are using and how to do common tasks
  • A pre-built application template for the cloud service part of your IoT application
  • Full source code for your IoT device

If you get stuck, you can always ask a mentor for additional help.

Exploring the application

Icons for Custom Vision, IoT Central and Raspberry Pi

The application your team will build will consist of 3 components:

  • An image classifier running in the cloud using Microsoft Custom Vision

  • An IoT application running in the cloud using Azure IoT Central

  • A Raspberry Pi based IoT device with a camera

The application flow described below

When a dog breed needs to be detected:

  1. A button on the IoT application is clicked

  2. The IoT application sends a command to the IoT device to detect the breed

  3. The IoT device captures an image using it's camera

  4. The image is sent to the image classifier ML model in the cloud to detect the breed

  5. The results of the classification are sent back to the IoT device

  6. The detected breed is sent from the IoT device to the IoT application

Goals

Your team will set up the Pi, ML model and IoT application, then connect everything to gether by deploying code to the IoT device.

💁 Each goal below defines what you need to achieve, and points you to relevant on-line resources that will show you how the cloud services or tools work. The aim here is not to provide you with detailed steps to complete the task, but allow you to explore the documentation and learn more about the services as you work out how to complete each goal.

  1. Set up your Raspberry Pi and camera: You will need to set up a clean install of Raspberry Pi OS on your Pi and ensure all the required software is installed.

    💻 If you are using a PC or Mac instead of a Pi, your team will need to set this up instead.

  2. Train your ML model: Your team will need to train the ML model in the cloud using Microsoft Custom Vision. You can train and test this model using the images that have been provided by the animal shelter.

  3. Set up your IoT application: Your team will set up an IoT application in the cloud using IoT Central, an IoT software-as-a-service (SaaS) platform. You will be provided with a pre-built application template to use.

  4. Deploy device code to your Pi: The code for the IoT device needs to be configured and deployed to the Raspberry Pi. You will then be able to test out your application.

    💻 If you are using a PC or Mac instead of a Pi, your team will need to run the device code locally.

💁 The first 3 goals can be worked on concurrently, with different team members working on different steps. Once these 3 are completed, the final step can be worked on by the team.

Validation

This workshop is designed to be a goal-oriented self-exploration of Azure and related technologies. Your team can validate some of the goals using the supplied validation scripts, and instructions are provided where relevant. Your team can then validate the final solution by using the IoT device to take a picture of one of the provided testing images and ensuring the correct result appears in the IoT application.

Where do we go from here?

This project is designed as a potential seed for ideas and future development during your hackathon. Other hack ideas for similar IoT devices that use image classification include:

  • Trash sorting into landfill, recycling, and compost.

  • Identification of disease in plant leaves.

  • Detecting skin cancer by classification of moles.

Improvements you could make to this device include:

  • Adding hardware such as a button to take a photograph, instead of relying on the IoT application.

  • Adding a screen or LCD display to the IoT device to show the breed.

  • Migrating the image classifier to the edge to allow the device to run without connectivity using Azure IoT Edge.

Learn more

You can learn more about using Custom Vision to train image classifiers and object detectors using the following resources:

You can learn more about Azure IoT Central using the following resources:

If you enjoy working with IoT, you can learn more using the following resource:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
The goal of this project is for anyone with an old printer to be able to double-sided printing.

Welcome to PDF-double-side! Hi! I'm 15. I have a old printer so I can't print double-sided outs. The goal of this project is for anyone with an old pr

DejaVu 4 Dec 28, 2021
An IoT Trivia app that shows you how to take a JSON web API such as the opentdb.com API and stream and display it on a FeatherS2 in an OLED display.

CircuitPython IoT Trivia ESP32-S2 OLED Version An IoT Trivia app that shows you how to take a JSON web API such as the opentdb.com API and stream and

Kevin Thomas 1 Nov 27, 2021
Water quality integration for Home Assistant with data provided by Budapest FVM

Water Quality FVM (Budapest, HU) custom integration for Home Assistant This custom component integrates water quality information provided by Budapest

Atticus Maximus 3 Dec 23, 2021
Turns a compatible Raspberry Pi device into a smart USB drive for PS4/PS5.

PSBerry A WIP project for Raspberry Pi, which turns a compatible RPI device into a smart USB drive for PS4/PS5. Allows for save management of PS4 game

Filip Tomaszewski 2 Jan 15, 2022
A ESP32 project template with a web interface built in React

ESP AP Webserver demo.mp4 This is my experiment with "mobile app development" for the ESP32. The project consists of two parts, the ESP32 code and the

8 Dec 15, 2022
Control DJI Tello with Raspberry Pi and PS4 Controller

Control-DJI-Tello-with-Raspberry-Pi-and-PS4-Controller Demo of this project see

MohammadReza Sharifi 24 Aug 11, 2022
It is a serial communicator(controller, receiver...), communicate with sensor LP20 which is a laser ranger.

Intro It is a serial communicator(controller, receiver...), communicate with sensor LP20 which is a laser ranger. Its datasheet is contained in this r

3 Sep 19, 2022
Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi

Clean Dashboard for Pi-Hole Minimal and clean dashboard to visualize some stats of Pi-Hole with an E-Ink display attached to your Raspberry Pi.

Alessio Santoru 104 Dec 14, 2022
ROS2 nodes for Waveshare Alphabot2-Pi mobile robot.

ROS2 for Waveshare Alphabot2-Pi This repo contains ROS2 packages for the Waveshare Alphabot2-Pi mobile robot: alphabot2: it contains the nodes used to

Michele Rizzo 2 Oct 11, 2022
Home Assistant custom integration for e-distribución

e-Distribución is an energy distribution company that covers most of South Spain area. If you live in this area, you probably are able to register into their website to get some information about you

VMG 17 Sep 07, 2022
Python library for the Phomemo m02s bluetooth thermal printer

Phomemo M02S Python library This is a basic Python library for controlling the Phomemo M02S bluetooth thermal printer. It probably only works on Mac &

Stargirl Flowers 28 Nov 07, 2022
Universal Xiaomi MIoT integration for Home Assistant

Xiaomi MIoT Raw 简体中文 | English MIoT 协议是小米智能家居从 2018 年起推行的智能设备通信协议规范,此后凡是可接入米家的设备均通过此协议进行通信。此插件按照 MIoT 协议规范与设备通信,实现对设备的状态读取及控制。

1.9k Jan 02, 2023
🏡 My Home Assistant Configs. Be sure to 🌟 my repo to follow the updates!

Home Assistant Configuration Here's my Home Assistant configuration. I have installed HA on a Lenovo ThinkCentre M93P Tiny with an Intel Dual-Core i5-

iLyas Bakouch 25 Dec 30, 2022
This is the remake of the program PYOBD. It works on Python3 and all new libraries. It was tested on Linux, Windows, and it should work on MAC too.

This is the remake of the program PYOBD. It works on Python3 and all new libraries. It was tested on Linux, Windows, and it should work on MAC too. You just need an ELM327 USB or bluetooth device and

127 Jan 06, 2023
rPico KMK powered macropad with IPS screen

MacroPact rPico KMK powered macropad with IPS screen Idea/Desing: Sean Yin Build/Coding: kbjunky ( In case of any problems hit me up on Discord kbjunk

81 Dec 21, 2022
Port of Uxn to digital hardware in the Logisim simulator

Uxn-Logisim Implements the Uxn instruction set in digital hardware. Very WIP. Contents cpu.circ - The Logisim file microcode.mc - Microcode source fil

DeltaF1 11 Mar 27, 2022
Raspberry Pi Pico and LoRaWAN from CircuitPython

Raspberry Pi Pico and LoRaWAN from CircuitPython Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython

Alasdair Allan 15 Oct 08, 2022
A Home Assistant sensor that tells you what holiday is next

Next Holiday Sensor This sensor tells you what holiday is coming up next. You can use it to set holiday light colors or other scenes. The state of the

Nick Touran 20 Dec 04, 2022
Huawei Solar sensors for Home Assistant

Huawei Solar Sensors This integration splits out the various values that are fetched from your Huawei Solar inverter into separate HomeAssistant senso

Thijs Walcarius 151 Dec 31, 2022
The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments.

The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments. ABR Control provides API's for the Mujoco, CoppeliaSim (formerly known

Applied Brain Research 277 Jan 05, 2023