Python Processing Tool for Vasp Ipnut/Output

Overview

PivotPy

A Python Processing Tool for Vasp Input/Output. A CLI is available in Powershell, see Vasp2Visual.

Run in Azure Open In Colab

  Index● 
  XmlElementTree 
  StaticPlots 
  InteractivePlots 
  Utilities 
  StructureIO 
  Widgets 

Install

pip install pivotpy

How to use

Changelog for version 0.9.5 onward

  • pivotpy.s_plots.splot_rgb_lines and pivotpy.s_plots.splot_rgb_lines are refactored and no more depnd on create_rgb_lines, so this function is dropped, If you still want to use it, use versions below 0.9.5.
  • A class pivotpy.g_utils.Vasprun is added which provides shortcut for export_vasprun and plotting functions. Under this class or as aliases:
    • splot_bands --> sbands
    • splot_rgb_lines --> srgb
    • iplot_rgb_lines --> irgb
    • splot_color_lines --> scolor
    • splot_dos_lines --> sdos
    • iplot_dos_lines --> idos
  • The plot functions starting with 'quick' or 'plotly' are still working but deprecated in favor of consistent names above starting from version 1.0.3.
  • A class pivotpy.g_utils.LOCPOT_CHG is added which can be used to parse and visualize files like LOCPOT and CHG.
  • A function pivotpy.vr_parser.split_vasprun is added which splits vasprun.xml file into a small file _vasprun.xml without projected data and creates text files _set[1,2,3,4].txt based on how many spin sets are there.
  • A function pivotpy.vr_parser.islice2array is added which can reads data from text/csv/tsv files (even if text and numbers are mixed) accoridng to slices you provide, this does not load full file in memory and it is also useful in parsing EIGENVAL, PROCAR like files with a few lines of code only.
  • Version 1.0.0 is updated with an overhaul of widgets module. VasprunApp is introduced as class to access internals of app easily.

CLI commnds

  • Use pivotpy in system terminal to launch DOCS.
  • Use pivotpy_get_poscar to download POSCAR.
  • Use pivotpy_get_kpath to create fine controlled KPATH.
  • More to come.

New: Plot in Terminal without GUI

Use pp.plt2text(colorful=True/False) after matplotlib's code and your figure will appear in terminal. You need to zoom out alot to get a good view like below.

Tip: Use file matplotlib2terminal.py on github independent of this package to plot in terminal. IMG

New: Ipywidgets-based GUI

See GIF here: GIF

New: Live Slides in Jupyter Notebook

Navigate to ipyslides or do pip install ipyslides to create beautiful data driven presentation in Jupyter Notebook.

import os, pivotpy as pp
os.chdir('E:/Research/graphene_example/ISPIN_1/bands')
xml_data=pp.read_asxml()
vr=pp.export_vasprun(elim=[-5,5])
vr
Loading from PowerShell Exported Data...





Data(
    sys_info = Data(
        SYSTEM = C2
        NION = 2
        NELECT = 8
        TypeION = 1
        ElemName = ['C']
        E_Fermi = -3.3501
        fields = ['s', 'py', 'pz', 'px', 'dxy', 'dyz', 'dz2', 'dxz', 'x2-y2']
        incar = Data(
            SYSTEM = C2
            PREC = high
            ALGO = N
            LSORBIT = T
            NELMIN = 7
            ISMEAR = 0
            SIGMA = 0.10000000
            LORBIT = 11
            GGA = PS
        )
        ElemIndex = [0, 2]
        ISPIN = 1
    )
    dim_info = Data(
        kpoints = (NKPTS,3)
        kpath = (NKPTS,1)
        bands = ⇅(NKPTS,NBANDS)
        dos = ⇅(grid_size,3)
        pro_dos = ⇅(NION,grid_size,en+pro_fields)
        pro_bands = ⇅(NION,NKPTS,NBANDS,pro_fields)
    )
    kpoints = 
   
    
    kpath = 
    
     
    bands = Data(
        E_Fermi = -3.3501
        ISPIN = 1
        NBANDS = 21
        evals = 
     
      
        indices = range(1, 22)
    )
    tdos = Data(
        E_Fermi = -3.3501
        ISPIN = 1
        tdos = 
      
       
    )
    pro_bands = Data(
        labels = ['s', 'py', 'pz', 'px', 'dxy', 'dyz', 'dz2', 'dxz', 'x2-y2']
        pros = 
       
         ) pro_dos = Data( labels = ['s', 'py', 'pz', 'px', 'dxy', 'dyz', 'dz2', 'dxz', 'x2-y2'] pros = 
        
          ) poscar = Data( SYSTEM = C2 volume = 105.49324928 basis = 
         
           rec_basis = 
          
            positions = 
           
             labels = ['C 1', 'C 2'] unique = Data( C = range(0, 2) ) ) ) 
           
          
         
        
       
      
     
    
   

Matplotlib's static plots

  • Add anything from legend,colorbar, colorwheel. In below figure, all three are shown.
  • Use aliases such as sbands, sdos,srgb,irgb,scolor,idos for plotting.
#collapse_input
import pivotpy as pp, numpy as np 
import matplotlib.pyplot as plt 
vr1=pp.export_vasprun('E:/Research/graphene_example/ISPIN_2/bands/vasprun.xml')
vr2=pp.export_vasprun('E:/Research/graphene_example/ISPIN_2/dos/vasprun.xml')
axs=pp.init_figure(ncols=3,widths=[2,1,2.2],sharey=True,wspace=0.05,figsize=(8,2.6))
elements=[0,[0],[0,1]]
orbs=[[0],[1],[2,3]]
labels=['s','$p_z$','$(p_x+p_y)$']
ti_cks=dict(ktick_inds=[0,30,60,-1],ktick_vals=['Γ','M','K','Γ'])
args_dict=dict(elements=elements,orbs=orbs,labels=labels,elim=[-20,15])
pp.splot_bands(path_evr=vr1,ax=axs[0],**ti_cks,elim=[-20,15])
pp.splot_rgb_lines(path_evr=vr1,ax=axs[2],**args_dict,**ti_cks,colorbar=True,)
pp.splot_dos_lines(path_evr=vr2,ax=axs[1],vertical=True,spin='both',include_dos='pdos',**args_dict,legend_kwargs={'ncol': 3},colormap='RGB_m')
pp.color_wheel(axs[2],xy=(0.7,1.15),scale=0.2,labels=[l+'$^{⇅}$' for l in labels])
pp._show() 
�[0;92m elements[0] = 0 is converted to range(0, 2) which picks all ions of 'C'.To just pick one ion at this index, wrap it in brackets [].�[00m


E:\Research\pivotpy\pivotpy\s_plots.py:457: MatplotlibDeprecationWarning:

shading='flat' when X and Y have the same dimensions as C is deprecated since 3.3.  Either specify the corners of the quadrilaterals with X and Y, or pass shading='auto', 'nearest' or 'gouraud', or set rcParams['pcolor.shading'].  This will become an error two minor releases later.

svg

Interactive plots using plotly

args_dict['labels'] = ['s','p_z','p_x+p_y']
fig1 = pp.iplot_rgb_lines(vr1,**args_dict)
#pp.iplot2html(fig1) #Do inside Google Colab, fig1 inside Jupyter
from IPython.display import Markdown
Markdown("[See Interactive Plot](https://massgh.github.io/InteractiveHTMLs/iGraphene.html)")

See Interactive Plot

Brillouin Zone (BZ) Processing

  • Look in pivotpy.sio module for details on generating mesh and path of KPOINTS as well as using Materials Projects' API to get POSCAR right in the working folder with command get_poscar. Below is a screenshot of interactive BZ plot. You can double click on blue points and hit Ctrl + C to copy the high symmetry points relative to reciprocal lattice basis vectors. (You will be able to draw kpath in Pivotpy-Dash application and generate KPOINTS automatically from a web interface later on!).
  • Same color points lie on a sphere, with radius decreasing as red to blue and gamma point in gold color. These color help distinguishing points but the points not always be equivalent, for example in FCC, there are two points on mid of edges connecting square-hexagon and hexagon-hexagon at equal distance from center but not the same points.
  • Any colored point's hover text is in gold background.

Look the output of pivotpy.sio.splot_bz.

BZ

import pivotpy as pp 
pp.splot_bz([[1,0,0],[0,1,0],[0,0,1]],color=(1,1,1,0.2),light_from=(0.5,0,2),colormap='RGB').set_axis_off()
#pp.iplot2html(fig2) #Do inside Google Colab, fig1 inside Jupyter
from IPython.display import Markdown
Markdown("[See Interactive BZ Plot](https://massgh.github.io/InteractiveHTMLs/BZ.html)")

See Interactive BZ Plot

svg

Plotting Two Calculations Side by Side

  • Here we will use shift_kpath to demonstrate plot of two calculations on same axes side by side
#nbdev_collapse_input
import matplotlib.pyplot as plt
import pivotpy as pp 
plt.style.use('bmh')
vr1=pp.export_vasprun('E:/Research/graphene_example/ISPIN_1/bands/vasprun.xml')
shift_kpath=vr1.kpath[-1] # Add last point from first export in second one.
vr2=pp.export_vasprun('E:/Research/graphene_example/ISPIN_2/bands/vasprun.xml',shift_kpath=shift_kpath,try_pwsh=False)
last_k=vr2.kpath[-1]
axs=pp.init_figure(figsize=(5,2.6))
K_all=[*vr1.kpath,*vr2.kpath] # Merge kpath for ticks
kticks=[K_all[i] for i in [0,30,60,90,120,150,-1]]
ti_cks=dict(xticks=kticks,xt_labels=['Γ','M','K','Γ','M','K','Γ'])
pp.splot_bands(path_evr=vr1,ax=axs)
pp.splot_bands(path_evr=vr2,ax=axs,txt='Graphene(Left: ISPIN=1, Right: ISPIN=2)',ctxt='m')
pp.modify_axes(ax=axs,xlim=[0,last_k],ylim=[-10,10],**ti_cks)
Loading from PowerShell Exported Data...

svg

Interpolation

Amost every bandstructure and DOS plot function has an argument interp_nk which is a dictionary with keys n (Number of additional points between adjacent points) and k (order of interpolation 0-3). n > k must hold.

#collapse_input
import pivotpy as pp
plt.style.use('ggplot')
k=vr1.kpath
ef=vr1.bands.E_Fermi
evals=vr1.bands.evals-ef
#Let's interpolate our graph to see effect. It is useful for colored graphs.
knew,enew=pp.interpolate_data(x=k,y=evals,n=10,k=3)
plot=plt.plot(k,evals,'m',lw=5,label='real data')
plot=plt.plot(k,evals,'w',lw=1,label='interpolated',ls='dashed')
pp.add_text(ax=plt.gca(),txts='Graphene')

svg

LOCPOT,CHG Visualization

check out the class pivotpy.LOCPOT_CHG to visulize local potential/charge and magnetization in a given direction.

Running powershell commands from python.

Some tasks are very tideious in python while just a click way in powershell. See below, and try to list processes in python yourself to see the difference!

pp.ps2std(ps_command='(Get-Process)[0..4]')
NPM(K)    PM(M)      WS(M)     CPU(s)      Id  SI ProcessName
------    -----      -----     ------      --  -- -----------
23     7.19       3.71       0.47   18012   1 AcrobatNotificationClient
15     4.05      11.25       0.34   15776   1 AdobeCollabSync
20     6.30      13.31       7.86   15820   1 AdobeCollabSync
15     5.12      12.90       0.00    5424   0 AppHelperCap
23    41.73      48.20       0.52    3800   1 ApplicationFrameHost

Advancaed: Poweshell Cell/Line Magic %%ps/%ps

  • You can create a IPython cell magic to run powershell commands directly in IPython Shell/Notebook (Powershell core installation required).
  • Cell magic can be assigned to a variable foo by %%ps --out foo
  • Line magic can be assigned to a variable by foo = %ps powershell_command

Put below code in ipython profile's startup file (create one) "~/.ipython/profile_default/startup/powershell_magic.py"

from IPython.core.magic import register_line_cell_magic
from IPython import get_ipython
@register_line_cell_magic
def ps(line, cell=None):
    if cell:
        return get_ipython().run_cell_magic('powershell',line,cell)
    else:
        get_ipython().run_cell_magic('powershell','--out posh_output',line)
        return posh_output.splitlines()

Additionally you need to add following lines in "~/.ipython/profile_default/ipython_config.py" file to make above magic work.

from traitlets.config.application import get_config
c = get_config()
c.ScriptMagics.script_magics = ['powershell']
c.ScriptMagics.script_paths = {
    'powershell' : 'powershell.exe -noprofile -command -',
    'pwsh': 'pwsh.exe -noprofile -command -'
}
%%ps 
Get-ChildItem 'E:\Research\graphene_example\'
    Directory: E:\Research\graphene_example





Mode                 LastWriteTime         Length Name                                                                        

----                 -------------         ------ ----                                                                        

da----        10/31/2020   1:30 PM                ISPIN_1                                                                     

da----          5/9/2020   1:05 PM                ISPIN_2                                                                     

-a----          5/9/2020   1:01 PM          75331 OUTCAR                                                                      

-a----          5/9/2020   1:01 PM         240755 vasprun.xml                                                                 
x = %ps (Get-ChildItem 'E:\Research\graphene_example\').Name
x
['ISPIN_1', 'ISPIN_2', 'OUTCAR', 'vasprun.xml']

Functions Reference

  Index● 
  XmlElementTree 
  StaticPlots 
  InteractivePlots 
  Utilities 
  StructureIO 
  Widgets 

a-shell: A terminal for iOS, with multiple windows

a-shell: A terminal for iOS, with multiple windows

Nicolas Holzschuch 1.7k Jan 02, 2023
ForX - get forex quotes from the terminal

A command line tool for checking exchange rates between currencies, both crypto and fiat.

Gabe Banks 52 Dec 10, 2022
dotfilery, configuration, environment settings, automation, etc.

┌┬┐┌─┐┌─┐┌─┐┬ ┬┌┬┐┬ ┬┬┌─┐ │││├┤ │ ┬├─┤│ │ │ ├─┤││ :: bits & bobs, dots & things. ┴ ┴└─┘└─┘┴ ┴┴─┘┴ ┴ ┴ ┴┴└─┘ @megalithic 🚀 Instal

Seth Messer 89 Dec 25, 2022
Basic python tools to generate shellcode runner in vba

vba_bin_runner Basic python tools to generate shellcode runner in vba. The stub use ZwAllocateVirtualMemory to allocate memory, RtlMoveMemory to write

4 Aug 24, 2021
Themes for the kitty terminal emulator

Themes for the kitty terminal This is a collection of themes for the kitty terminal emulator. The themes were initially imported from dexpota/kitty-th

Kovid Goyal 190 Jan 05, 2023
A CLI Application to detect plagiarism in Source Code Files.

Plag Description A CLI Application to detect plagiarism in Source Code Files. Features Compare source code files for plagiarism. Extract code features

default=dev 2 Nov 10, 2022
Tools hacking termux in the name ant-attack

Hello friends, I am ama.player0000. Web developer, software, Android command line (termux). (1)=Well, ant-attack tool is a tool to attack sites and disable them. (2)=You can use those CCTV servers, s

༺AMA.PLAYER༻ 1 Dec 17, 2021
topalias - Linux alias generator from bash/zsh command history with statistics, written on Python.

topalias topalias - Linux alias generator from bash/zsh command history with statistics, written on Python. Features Generate short alias for popular

Sergey Chudakov 38 May 26, 2022
Command Line Manager + Interactive Shell for Python Projects

Manage Command Line Manager + Interactive Shell for Python Projects

Python Manage 123 Aug 28, 2022
CLI to show end-of-life dates for tools and technologies.

Python 3.9+ interface to endoflife.date to show end-of-life dates for tools and technologies.

Hugo van Kemenade 32 Jan 06, 2023
lfb (light file browser) is a terminal file browser

lfb (light file browser) is a terminal file browser. The whole program is a mess as of now. In the feature I will remove the need for external dependencies, tidy up the code, make an actual readme, a

2 Apr 09, 2022
🎮 An easy to use tool to change the mapping of your input device buttons.

Input Remapper Formerly Key Mapper An easy to use tool to change the mapping of your input device buttons. Supports mice, keyboards, gamepads, X11, Wa

Tobi 1.9k Jan 05, 2023
A Reverse Shell Python Packages

A Reverse Shell Python Packages

1 Nov 03, 2021
Zero-config CLI for TypeScript package development

Despite all the recent hype, setting up a new TypeScript (x React) library can be tough. Between Rollup, Jest, tsconfig, Yarn resolutions, ESLint, and

Jared Palmer 10.5k Jan 08, 2023
term2048 is a terminal-based version of 2048.

term2048 is a terminal-based version of 2048.

Baptiste Fontaine 798 Nov 21, 2022
Shortcut-Maker - It is a tool that can be set to run any tool with a single command

Shortcut-Maker It is a tool that can be set to run any tool with a single command Coded by Dave Smith(Owner of Sl Cyber Warriors) Command list 👇 pkg

Dave Smith 10 Sep 14, 2022
Because sometimes you need to do it live

doitlive doitlive is a tool for live presentations in the terminal. It reads a file of shell commands and replays the commands in a fake terminal sess

Steven Loria 3.2k Jan 09, 2023
Text based command line webcam photobooth app

Skunkbooth Why See it in action Usage Installation Run Media location Contributing Install Poetry Clone the repo Activate poetry shell Install dev dep

David Yang 45 Dec 26, 2022
A terminal tool for git. When we use git, do you feel very uncomfortable with too long commands

PIGIT A terminal tool for git. When we use git, do you feel very uncomfortable with too long commands. For example: git status --short, this project c

Zachary 1 Apr 09, 2022
MiShell is a multi-platform, multi-architecture project based on the first version (MiShell32)

MiShell is a multi-platform, multi-architecture project based on the first version (MiShell32), which offers super super small reverse shell payloads great for injection in buffer overflow vulnerabil

Kamyar Hatamnezhad 0 Oct 27, 2022