This is the antenna performance plotted from tinyGS reception data.

Overview

tinyGS-antenna-map

This is the antenna performance plotted from tinyGS reception data. See their repository.

The code produces a plot that provides Azimuth and Elevation information showing the location in the sky, based on the observer/station, where the satellite reception is successful and packets are uploaded to TinyGS.

My four active stations show very different reception patterns. These are a 433Mhz vertical 1/4 wave antenna, a 433Mhz vertical dipole, a 433Mhz horizontal dipole, and a 1/4 wave 915 Mhz antenna (that has received nothing useful as there aren't any satellites presently transmitting). All are on the East side of the house and somewhat blocked towards the West.

W6LHI

Darker quadrants mean more reception. Individual packets received are the black dots. Packets received with CRC Errors are shown as red dots.

The center of the circle is exactly vertical from the observer/station. The edge of the circle is the horizon (well, kinda!).

For example, if you operate with a simple horizontal dipole, then you would see a bias in the data towards the higher reception direction (90 degrees from the dipole length). If you have a Al/Ez tracking antenna then you should see a very broad reception map.

The program will display the plot on the desktop if it is run in that environment. If you want a CLI process, then look at the -o flag below. The program uses Matplotlib and the install instructions are included - follow them carefully. All instructions are for Debian (and tested on a R.Pi). This code should work on other systems. Any problems? - please use GitHub issues.

Install

Download and install code from GitHub

The best copy of this code is always on GitHub. If you need the git command (and you will) do this part first:

$ sudo apt-get install -y git
...
$

Grab the code via this:

$ git clone https://github.com/mahtin/tinyGS-antenna-map.git
...
$ cd tinyGS-antenna-map
$

Installing required packages (i.e Matplotlib)

Please read and follow the INSTALL-MATPLOTLIB page. Then return here after that is finished.

Install continued

Once Matplotlib is install cleanly the code requires some additional packages/libraries:

$ sudo python3 -m pip install -U -r requirements.txt
...
$

Now the install is finished. Congratulations.

Setting up your user-id

To plot your own graphs from your own stations, you need to know what your own user-id on TinyGS is. The first option is to save it away in a file for all the code to use.

Storing your user-id

Your user-is can be found via various methods.

Assuming you are logged into TinyGS, you can visit https://tinygs.com and click on the User Console icon and then look at the resulting station URL (it will be something like: https://tinygs.com/user/20000007). The same user-id number can be seen in the URL for the per-station page.

user-id

Or, you can use your Telegram TinyGS Personal Bot channel to find your user-id. It's the last number from the passwordless login link you get with the /weblogin command.

user-id

The user-id is the URL provided (see example image).

Copy the number seens and use it to create a .user_id file via the following command:

$ echo '20000007' > .user_id
$

Your number will be different.

Specifying user for each run

If you choose, you specify your user-id manually on each command run. See the -u option below.

Plotting your antenna map

All your stations will be plotted on a single page. Make the displayed page larger if you need.

$ ./tinygs_antenna_map.py

This assumes that you are on a machine with a display. If you are headless, then the following will be useful:

$ ./tinygs_antenna_map.py -o > pretty-graph.png
$ scp pretty-graph.png somewhere-else.example.com:

If Matplotlib sends out warning messages about Connection Refused or Gdk-CRITICAL, it's because you can't connect to the display (even if you are trying to write an image file). This still produces an image. You can fix this by setting the MPLBACKEND environment variable (see Matplotlib builtin backends instructions):

$ MPLBACKEND=Agg ./tinygs_antenna_map.py -o > pretty-graph.png
...
$

tinygs_antenna_map.py options

The tinygs_antenna_map.py program takes various arguments.

tinygs_antenna_map [-v|--verbose] [-h|--help] [-r|--refresh] [-s|--station[,station...]] [-u|--user] user-id]
  • [-v|--verbose] - provide some information on each of the packets being processed/displayed.
  • [-h|--help] - this message.
  • [-r|--refresh] - presently unused; but will pull data from TinyGS site on demand.
  • [-s|--station[,station...]] - list the station or stations to plot. Use comma-seperated (i.e. A,B,C) for more than one station.
  • [-u|--user] user-id] - define the user-id vs using the .user_id file.
  • [-o|--output] - produce a PNG file on stdout (use: tinygs_antenna_map.py -o > diagram.png for example`).

Specifying the station or user-id

To produce a plot for a specific user (for example 20000007):

$ ./tinygs_antenna_map.py -u 20000007

Your number will be different.

To produce a plot for one of your specific stations, use the station name:

$ ./tinygs_antenna_map.py -s W6LHI_433Mhz

To produce a plot for someone else station (and I'm not judging you in anyway):

$ ./tinygs_antenna_map.py -s MALAONE -u 0

(No idea who MALAONE is). Note the -u 0 argument. This overtides your .user_id file if it exists (as this station is a different user).

Data refresh

The program can be run many times; however it will only collect new data from TinyGS API no-and-again. This is to reduce the load on their servers.

  • Packet data is updated at-best every twelve hours
  • Station data is updated at-best every five days
  • TLE data is updated at-best every two days

Should you want to force a data refresh, then use the -r flag. Don't blame me if you get banned from the site.

$ ./tinygs_antenna_map.py -r

I don't recommend using that flag.

Adding antenna direction graphics to the plot(s)

If you want to superimpose an antenna direction on the graphs; use the following examples:

An simple antenna direction for all ploted stations:

$ ./tinygs_antenna_map.py -a 220

An antenna direction for a specific ploted station:

$ ./tinygs_antenna_map.py -a [email protected]_433Mhz

An antenna direction for more than one ploted station:

$ ./tinygs_antenna_map.py -a [email protected]_433Mhz,[email protected]_433Mhz_2

The numbers are in degress and the comma seperated list must contain valid station names.

Owner
Martin J. Levy
Roaming the planet; one packet at a time! PGP: 7EA1 39C4 0C1C 842F 9D41 AAF9 4A34 925D 0517 2859 Ham operator: W6lHI/G8LHI
Martin J. Levy
A Python tool to display geolocation information in the traceroute.

IP2Trace Python IP2Trace Python is a Python tool allowing user to get IP address information such as country, region, city, latitude, longitude, zip c

IP2Location 22 Jan 08, 2023
Hapi is a Python library for building Conceptual Distributed Model using HBV96 lumped model & Muskingum routing method

Current build status All platforms: Current release info Name Downloads Version Platforms Hapi - Hydrological library for Python Hapi is an open-sourc

Mostafa Farrag 15 Dec 26, 2022
Geospatial Image Processing for Python

GIPPY Gippy is a Python library for image processing of geospatial raster data. The core of the library is implemented as a C++ library, libgip, with

GIPIT 83 Aug 19, 2022
PySAL: Python Spatial Analysis Library Meta-Package

Python Spatial Analysis Library PySAL, the Python spatial analysis library, is an open source cross-platform library for geospatial data science with

Python Spatial Analysis Library 1.1k Dec 18, 2022
Global topography (referenced to sea-level) in a 10 arcminute resolution grid

Earth - Topography grid at 10 arc-minute resolution Global 10 arc-minute resolution grids of topography (ETOPO1 ice-surface) referenced to mean sea-le

Fatiando a Terra Datasets 1 Jan 20, 2022
Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent.

goes-latlon Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent. 🌎 🛰️ The grid files can be acces

Douglas Uba 3 Apr 06, 2022
A toolbox for processing earth observation data with Python.

eo-box eobox is a Python package with a small collection of tools for working with Remote Sensing / Earth Observation data. Package Overview So far, t

13 Jan 06, 2022
gjf: A tool for fixing invalid GeoJSON objects

gjf: A tool for fixing invalid GeoJSON objects The goal of this tool is to make it as easy as possible to fix invalid GeoJSON objects through Python o

Yazeed Almuqwishi 91 Dec 06, 2022
A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets

Notebooks A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets This repository provides tools

NASA Jet Propulsion Laboratory 27 Oct 25, 2022
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
leafmap - A Python package for geospatial analysis and interactive mapping in a Jupyter environment.

A Python package for geospatial analysis and interactive mapping with minimal coding in a Jupyter environment

Qiusheng Wu 1.4k Jan 02, 2023
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
Starlite-tile38 - Showcase using Tile38 via pyle38 in a Starlite application

Starlite-Tile38 Showcase using Tile38 via pyle38 in a Starlite application. Repo

Ben 8 Aug 07, 2022
Track International space station with python

NASA-ISS-tracker Track International space station with python Modules import json import turtle import urllib.request import time import webbrowser i

Nikhil Yadav 8 Aug 12, 2021
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.

r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o

Brendan Harmon 7 Oct 21, 2022
gpdvega is a bridge between GeoPandas and Altair that allows to seamlessly chart geospatial data

gpdvega gpdvega is a bridge between GeoPandas a geospatial extension of Pandas and the declarative statistical visualization library Altair, which all

Ilia Timofeev 49 Jul 25, 2022
FDTD simulator that generates s-parameters from OFF geometry files using a GPU

Emport Overview This repo provides a FDTD (Finite Differences Time Domain) simulator called emport for solving RF circuits. Emport outputs its simulat

4 Dec 15, 2022
🌐 Local tile server for viewing geospatial raster files with ipyleaflet

🌐 Local Tile Server for Geospatial Rasters Need to visualize a rather large raster (gigabytes) you have locally? This is for you. A Flask application

Bane Sullivan 192 Jan 04, 2023