Machine Learning powered app to decide whether a photo is food or not.

Overview

Food Not Food dot app ( 🍔 🚫 🍔 )

Code for building a machine Learning powered app to decide whether a photo is of food or not.

See it working live at: https://foodnotfood.app

Yes, that's all it does.

It's not perfect.

But think about it.

How do you decide what's food or not?

Inspiration

Remember hotdog not hotdog?

That's what this repo builds, excepts for food or not.

It's arguably harder to do food or not.

Because there's so many options for what a "food" is versus what "not food" is.

Whereas with hotdog not hotdog, you've only got one option: is it a hotdog or not?

Video and notes

I built this app during a 10-hour livestream to celebrate 100,000 YouTube Subscribers (thank you thank you thank you).

The full stream replay is available to watch on YouTube.

The code has changed since the stream.

I made it cleaner and more reproducible.

My notes are on Notion.

Steps to reproduce

Note: If this doesn't work, please leave an issue.

To reproduce, the following steps are best run in order.

You will require and installation of Conda, I'd recommend Miniconda.

Clone the repo

git clone https://github.com/mrdbourke/food-not-food
cd food-not-food

Environment creation

I use Conda for my environments. You could do similar with venv and pip but I prefer Conda.

This code works with Python 3.8.

conda create --prefix ./env python=3.8 -y
conda activate ./env
conda install pip

Installing requirements

Getting TensorFlow + GPU to work

Follow the install instructions for running TensorFlow on the GPU.

This will be required for model_building/train_model.py.

Note: Another option here to skip the installation of TensorFlow is to use your global installation of TensorFlow and just install the requirements.txt file below.

Other requirements

If you're using your global installation of TensorFlow, you might be able to just run pip install requirements.txt in your environment.

Or if you're running in another dedicated environment, you should also be able to just run pip install -r requirements.txt.

pip install -r requirements.txt

Getting the data

  1. Download Food101 data (101,000 images of food).
python data_download/download_food101.py
  1. Download a subset of Open Images data. Use the -n flag to indicate how many images from each set (train/valid/test) to randomly download.

For example, running python data_download/download_open_images.py -n=100 downloads 100 images from the training, validation and test sets of Open Images (300 images in total).

The downloading for Open Images data is powered by FiftyOne.

python data_download/download_open_images.py -n=100

Processing the data

  1. Extract the Food101 data into a "food" directory, use the -n flag to set how many images of food to extract, for example -n=10000 extracts 10,000 random food images from Food101.
python data_processing/extract_food101.py -n=10000
  1. Extract the Open Images images into open_images_extracted directory.

The data_processing/extract_open_images.py script uses the Open Images labels plus a list of foods and not foods (see data/food_list.txt and data/non_food_list.txt) to separate the downloaded Open Images.

This is necessary because some of the images from Open Images contain foods (we don't want these in our not_food class).

python data_processing/extract_open_images.py
  1. Move the extracted images into "food" and "not_food" directories.

This is necessary because our model training file will be searching for class names by the title of our directories (food and not_food).

python data_processing/move_images.py 
  1. Split the data into training and test sets.

This creates a training and test split of food and not_food images.

This is so we can verify the performance of our model before deploying it.

It'll create the structure:

train/
    food/
        image1.jpeg
        image2.jpeg
        ...
    not_food/
        image100.jpeg
        image101.jpeg
        ...
test/
    food/
        image201.jpeg
        image202.jpeg
        ...
    not_food/
        image301.jpeg
        image302.jpeg
        ...

To do this, run:

python data_processing/data_splitting.py

Modeling the data

Note: This will require a working install of TensorFlow.

Running the model training file will produce a TensorFlow Lite model (this is small enough to be deployed in a browser) saved to the models directory.

The script will look for the train and test directories and will create training and testing datasets on each respectively.

It'll print out the progress at each epoch and then evaluate and save the model.

python model_building/train_model.py

What data is used?

The current deployed model uses about 40,000 images of food and 25,000 images of not food.

Owner
Daniel Bourke
Machine Learning Engineer live on YouTube.
Daniel Bourke
Exercise to teach a newcomer to the CLSP grid to set up their environment and run jobs

Exercise to teach a newcomer to the CLSP grid to set up their environment and run jobs

Alexandra 2 May 18, 2022
清晰易读的7x7像素点阵中文字体和取模工具

FontChinese7x7 上古神器 III : 7x7像素点阵中文字体 想要在低分辨率屏幕上显示中文, 却发现中文字体实在是太大? 找了全网发现字体库最小也只有12x12? 甚至是好不容易找到了一个8x8字体, 结果发现字体收费且明确说明不得以任何形式嵌入到软件当中? 那就让这个项目来解决你的问

Angelic47 72 Dec 12, 2022
LinkScope allows you to perform online investigations by representing information as discrete pieces of data, called Entities.

LinkScope Client Description This is the repository for the LinkScope Client Online Investigation software. LinkScope allows you to perform online inv

108 Jan 04, 2023
Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies

pyshader Python 3.9.4 Graphics and Compute Shader Framework and Primitives with no external module dependencies Fully programmable shader model (even

Alastair Cota 1 Jan 11, 2022
A custom advent of code I am completing

advent-of-code-custom A custom advent of code I am doing in python. The link to the problems I am solving is here: https://github.com/seldoncode/Adven

Rocio PV 2 Dec 11, 2021
BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset.

BloodCheck BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset. Installation

Mr B0b 16 Nov 05, 2021
Addon for Blender 2.8+ that automatically creates NLA tracks for all animations. Useful for GLTF export.

PushDownAll An addon for Blender 2.8+ that runs Push Down on all animations, creating NLA tracks for each. This is useful if you have an object with m

Cory Petkovsek 16 Oct 06, 2022
Eros is an expiremental programming language built using simple Python code.

Eros is an expiremental programming language built using simple Python code. Featuring an easy syntax and unique features like type slicing, the language remains an expirement that grows in down time

zxro 2 Nov 21, 2021
This is the course project of AI3602: Data Mining of SJTU

This is the course project of AI3602: Data Mining of SJTU. Group Members include Jinghao Feng, Mingyang Jiang and Wenzhong Zheng.

2 Jan 13, 2022
A responsive package for Buttons, DropMenus and Combinations

A responsive package for Buttons, DropMenus and Combinations, This module makes the process a lot easier !

Skr Phoenix YT 0 Jan 30, 2022
「📖」Tool created to extract metadata from a domain

Metafind is an OSINT tool created with the aim of automating the search for metadata of a particular domain from the search engine known as Google.

9 Dec 28, 2022
Blender Light Manipulation - A script that makes it easier to work with light

Blender Light Manipulation A script that makes it easier to work with light 1. Wstęp W poniższej dokumentacji przedstawiony zostanie skrypt, który swo

Tomasz 1 Oct 19, 2021
Learn Python tips, tools, and techniques in around 5 minutes each.

Python shorts Learn Python tips, tools, and techniques in around 5 minutes each. Watch on YouTube Subscribe on YouTube to keep up with all the videos.

Michael Kennedy 28 Jan 01, 2023
A Kodi add-on for watching content hosted on PeerTube.

A Kodi add-on for watching content hosted on PeerTube. This add-on is under development so only basic features work, and you're welcome to improve it.

1 Dec 18, 2021
A simple Programming Language

R.S.O.C. A custom built programming language About The Project R.S.O.C. is a custom built programming language very similar to a low-level 8085 progra

Ravi Maurya 17 Sep 13, 2022
CMPE 204 Modelling Project

CISC/CMPE 204 Modelling Project Welcome to the major project for CISC/CMPE 204 (Fall 2021)! Change this README.md file to summarize your project (few

totallyrin 2 May 16, 2022
FileTransfer - to exchange files from phone to laptop

A small website I locally host on my network to exchange files from my phone and other devices to my laptop.

Ronak Badhe 4 Feb 15, 2022
Add your recently blog and douban states in your GitHub Profile

Add your recently blog and douban states in your GitHub Profile

Bingjie Yan 4 Dec 12, 2022
Choice Coin 633 Dec 23, 2022
Python template for Advent of Code event

Advent of Code Python Starter A tamplate for Advent of Code write in Python. Usage The project use poetry for project manager. Clone this repository a

Leonardo Gago 6 Dec 31, 2022