A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.

Overview

Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection

This repository provides a PyTorch implementation of the Deep SAD method presented in our ICLR 2020 paper ”Deep Semi-Supervised Anomaly Detection”.

Citation and Contact

You find a PDF of the Deep Semi-Supervised Anomaly Detection ICLR 2020 paper on arXiv https://arxiv.org/abs/1906.02694.

If you find our work useful, please also cite the paper:

@InProceedings{ruff2020deep,
  title     = {Deep Semi-Supervised Anomaly Detection},
  author    = {Ruff, Lukas and Vandermeulen, Robert A. and G{\"o}rnitz, Nico and Binder, Alexander and M{\"u}ller, Emmanuel and M{\"u}ller, Klaus-Robert and Kloft, Marius},
  booktitle = {International Conference on Learning Representations},
  year      = {2020},
  url       = {https://openreview.net/forum?id=HkgH0TEYwH}
}

If you would like get in touch, just drop us an email to [email protected].

Abstract

Deep approaches to anomaly detection have recently shown promising results over shallow methods on large and complex datasets. Typically anomaly detection is treated as an unsupervised learning problem. In practice however, one may have---in addition to a large set of unlabeled samples---access to a small pool of labeled samples, e.g. a subset verified by some domain expert as being normal or anomalous. Semi-supervised approaches to anomaly detection aim to utilize such labeled samples, but most proposed methods are limited to merely including labeled normal samples. Only a few methods take advantage of labeled anomalies, with existing deep approaches being domain-specific. In this work we present Deep SAD, an end-to-end deep methodology for general semi-supervised anomaly detection. We further introduce an information-theoretic framework for deep anomaly detection based on the idea that the entropy of the latent distribution for normal data should be lower than the entropy of the anomalous distribution, which can serve as a theoretical interpretation for our method. In extensive experiments on MNIST, Fashion-MNIST, and CIFAR-10, along with other anomaly detection benchmark datasets, we demonstrate that our method is on par or outperforms shallow, hybrid, and deep competitors, yielding appreciable performance improvements even when provided with only little labeled data.

The need for semi-supervised anomaly detection

fig1

Installation

This code is written in Python 3.7 and requires the packages listed in requirements.txt.

Clone the repository to your machine and directory of choice:

git clone https://github.com/lukasruff/Deep-SAD-PyTorch.git

To run the code, we recommend setting up a virtual environment, e.g. using virtualenv or conda:

virtualenv

# pip install virtualenv
cd <path-to-Deep-SAD-PyTorch-directory>
virtualenv myenv
source myenv/bin/activate
pip install -r requirements.txt

conda

cd <path-to-Deep-SAD-PyTorch-directory>
conda create --name myenv
source activate myenv
while read requirement; do conda install -n myenv --yes $requirement; done < requirements.txt

Running experiments

We have implemented the MNIST, Fashion-MNIST, and CIFAR-10 datasets as well as the classic anomaly detection benchmark datasets arrhythmia, cardio, satellite, satimage-2, shuttle, and thyroid from the Outlier Detection DataSets (ODDS) repository (http://odds.cs.stonybrook.edu/) as reported in the paper.

The implemented network architectures are as reported in the appendix of the paper.

Deep SAD

You can run Deep SAD experiments using the main.py script.

Here's an example on MNIST with 0 considered to be the normal class and having 1% labeled (known) training samples from anomaly class 1 with a pollution ratio of 10% of the unlabeled training data (with unknown anomalies from all anomaly classes 1-9):

cd <path-to-Deep-SAD-PyTorch-directory>

# activate virtual environment
source myenv/bin/activate  # or 'source activate myenv' for conda

# create folders for experimental output
mkdir log/DeepSAD
mkdir log/DeepSAD/mnist_test

# change to source directory
cd src

# run experiment
python main.py mnist mnist_LeNet ../log/DeepSAD/mnist_test ../data --ratio_known_outlier 0.01 --ratio_pollution 0.1 --lr 0.0001 --n_epochs 150 --lr_milestone 50 --batch_size 128 --weight_decay 0.5e-6 --pretrain True --ae_lr 0.0001 --ae_n_epochs 150 --ae_batch_size 128 --ae_weight_decay 0.5e-3 --normal_class 0 --known_outlier_class 1 --n_known_outlier_classes 1;

Have a look into main.py for all possible arguments and options.

Baselines

We also provide an implementation of the following baselines via the respective baseline_<method_name>.py scripts: OC-SVM (ocsvm), Isolation Forest (isoforest), Kernel Density Estimation (kde), kernel Semi-Supervised Anomaly Detection (ssad), and Semi-Supervised Deep Generative Model (SemiDGM).

Here's how to run SSAD for example on the same experimental setup as above:

cd <path-to-Deep-SAD-PyTorch-directory>

# activate virtual environment
source myenv/bin/activate  # or 'source activate myenv' for conda

# create folder for experimental output
mkdir log/ssad
mkdir log/ssad/mnist_test

# change to source directory
cd src

# run experiment
python baseline_ssad.py mnist ../log/ssad/mnist_test ../data --ratio_known_outlier 0.01 --ratio_pollution 0.1 --kernel rbf --kappa 1.0 --normal_class 0 --known_outlier_class 1 --n_known_outlier_classes 1;

The autoencoder is provided through Deep SAD pre-training using --pretrain True with main.py. To then run a hybrid approach using one of the classic methods on top of autoencoder features, simply point to the saved autoencoder model using --load_ae ../log/DeepSAD/mnist_test/model.tar and set --hybrid True.

To run hybrid SSAD for example on the same experimental setup as above:

cd <path-to-Deep-SAD-PyTorch-directory>

# activate virtual environment
source myenv/bin/activate  # or 'source activate myenv' for conda

# create folder for experimental output
mkdir log/hybrid_ssad
mkdir log/hybrid_ssad/mnist_test

# change to source directory
cd src

# run experiment
python baseline_ssad.py mnist ../log/hybrid_ssad/mnist_test ../data --ratio_known_outlier 0.01 --ratio_pollution 0.1 --kernel rbf --kappa 1.0 --hybrid True --load_ae ../log/DeepSAD/mnist_test/model.tar --normal_class 0 --known_outlier_class 1 --n_known_outlier_classes 1;

License

MIT

Owner
Lukas Ruff
PhD student in the ML group at TU Berlin.
Lukas Ruff
Second version of SQL-PYTHON-Practicas

SQLite-Python Acerca de | Autor Sobre el repositorio Segunda version de SQL-PYTHON-Practicas 💻 Tecnologias Visual Studio Code Python SQLite3 📖 Requi

1 Jan 06, 2022
A python package to import files from an adjacent folder

EasyImports About EasyImports is a python package that allows users to easily access and import files from sister folders: f.ex: - Project - Folde

1 Jun 22, 2022
Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software.

Mozilla Campus Club CCEW is a student committee working to spread awareness on Open Source software. We organize webinars and workshops on different technical topics and making Open Source contributi

Mozilla-Campus-Club-Cummins 8 Jun 15, 2022
A Power BI/Google Studio Dashboard to analyze previous OTC CatchUps

OTC CatchUp Dashboard A Power BI/Google Studio dashboard analyzing OTC CatchUps. File Contents * ├───data ├───old summaries ─── *.md ├

11 Oct 30, 2022
✨ Real-life Data Analysis and Model Training Workshop by Global AI Hub.

🎓 Data Analysis and Model Training Course by Global AI Hub Syllabus: Day 1 What is Data? Multimedia Structured and Unstructured Data Data Types Data

Global AI Hub 71 Oct 28, 2022
The project that powers MDN.

Kuma Kuma is the platform that powers MDN (developer.mozilla.org) Development Code: https://github.com/mdn/kuma Issues: P1 Bugs (to be fixed ASAP) P2

MDN Web Docs 1.9k Dec 26, 2022
A document format conversion service based on Pandoc.

reformed Document format conversion service based on Pandoc. Usage The API specification for the Reformed server is as follows: GET /api/v1/formats: L

David Lougheed 3 Jul 18, 2022
Run `black` on python code blocks in documentation files

blacken-docs Run black on python code blocks in documentation files. install pip install blacken-docs usage blacken-docs provides a single executable

Anthony Sottile 460 Dec 23, 2022
Source Code for 'Practical Python Projects' (video) by Sunil Gupta

Apress Source Code This repository accompanies %Practical Python Projects by Sunil Gupta (Apress, 2021). Download the files as a zip using the green b

Apress 2 Jun 01, 2022
Canonical source repository for PyYAML

PyYAML - The next generation YAML parser and emitter for Python. To install, type 'python setup.py install'. By default, the setup.py script checks

The YAML Project 2k Jan 01, 2023
A comprehensive and FREE Online Python Development tutorial going step-by-step into the world of Python.

FREE Reverse Engineering Self-Study Course HERE Fundamental Python The book and code repo for the FREE Fundamental Python book by Kevin Thomas. FREE B

Kevin Thomas 7 Mar 19, 2022
Fast, efficient Blowfish cipher implementation in pure Python (3.4+).

blowfish This module implements the Blowfish cipher using only Python (3.4+). Blowfish is a block cipher that can be used for symmetric-key encryption

Jashandeep Sohi 41 Dec 31, 2022
the project for the most brutal and effective language learning technique

- "The project for the most brutal and effective language learning technique" (c) Alex Kay The langflow project was created especially for language le

Alexander Kaigorodov 7 Dec 26, 2021
Preview title and other information about links sent to chats.

Link Preview A small plugin for Nicotine+ to display preview information like title and description about links sent in chats. Plugin created with Nic

Nick 0 Sep 05, 2021
Clases y ejercicios del curso de python diactodo por la UNSAM

Programación en Python En el marco del proyecto de Inteligencia Artificial Interdisciplinaria, la Escuela de Ciencia y Tecnología de la UNSAM vuelve a

Maximiliano Villalva 3 Jan 06, 2022
Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD.

freecad-pyoptools Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD. Requirements It req

Combustión Ingenieros SAS 12 Nov 16, 2022
Plotting and analysis tools for ARTIS simulations

Artistools Artistools is collection of plotting, analysis, and file format conversion tools for the ARTIS radiative transfer code. Installation First

ARTIS Monte Carlo Radiative Transfer 8 Nov 07, 2022
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Template repo to quickly make a tested and documented GitHub action in Python with Poetry

Python + Poetry GitHub Action Template Getting started from the template Rename the src/action_python_poetry package. Globally replace instances of ac

Kevin Duff 89 Dec 25, 2022
Docov - Light-weight, recursive docstring coverage analysis for python modules

docov Light-weight, recursive docstring coverage analysis for python modules. Ov

Richard D. Paul 3 Feb 04, 2022