Learning to compose soft prompts for compositional zero-shot learning.

Overview

Compositional Soft Prompting (CSP)

Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model.

Reference Paper: Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

alt text

If you find CSP helpful, please cite our paper:

@article{csp2022,
  author = {Nayak, Nihal V. and Yu, Peilin and Bach, Stephen H.},
  title = {Learning to Compose Soft Prompts for Compositional Zero-Shot Learning},
  volume = {arXiv:2204.03574 [cs.LG]},
  year = {2022},
}

Setup

conda create --name clip python=3.7
conda activate clip
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install ftfy regex tqdm scipy pandas
pip3 install git+https://github.com/openai/CLIP.git

Alternatively, you can use pip install -r requirements.txt to install all the dependencies.

Download Dataset

We experiment with three datasets: MIT-States, UT-Zappos, and C-GQA.

sh download_data.sh

If you already have setup the datasets, you can use symlink and ensure the following paths exist: data/<dataset> where <datasets> = {'mit-states', 'ut-zappos', 'cgqa'}.

Training

python -u train.py \
  --dataset mit-states \
  --model ViT-L/14 \
  --experiment_name csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-05 \
  --attr_dropout 0.3 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --gradient_accumulation_steps 2 \
  --context_length 8 \
  --save_path data/model/mit-states/sample_model \
  --save_every_n 1

You can replace --dataset with {mit-states, ut-zappos, cgqa}. The best hyperparameters are included in the paper.

Evaluation

We evaluate our models in two settings: closed-world and open-world.

Closed-World Evaluation

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 16 \
  --experiment_name csp

Open-World Evaluation

For our open-world evaluation, we compute the feasbility calibration and then evaluate on the dataset.

Feasibility Calibration

We use GloVe embeddings to compute the similarities between objects and attributes. Download the GloVe embeddings in the data directory:

cd data
wget https://nlp.stanford.edu/data/glove.6B.zip

Move glove.6B.300d.txt into data/glove.6B.300d.txt.

To compute feasibility calibration for each dataset, run the following command:

python -u datasets/feasibility.py --dataset mit-states

The feasibility similarities are saved at data/feasibility_<dataset>.pt.

Evaluation

The open-world evaluation with the thresholds (feasibility calibration).

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_5.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name czsl \
  --threshold <threshold> \
  --open_world

If <threshold> is None, then the model picks the best threshold on the validation set. We use the following thresholds:

Dataset Threshold
mit-states 0.4069159426
ut-zappos 0.5299109123
cgqa 0.49937106273612186

Note: We use 256GB of cpu memory to evaluate cgqa.

Generalization to Higher-Order Compositions

Evaluate the trained CSP vocabulary on the new AAO-MIT-States dataset.

python aao/evaluate_att_att_obj.py \
  --experiment_name csp \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt

We thank Andrew Delworth and Elise Carman for helping us annotate this dataset.

Generalization to Mixed Pretrained and Fine-Tuned Vocabulary

Ablation experiment to train and evaluate CSP with reduced fine-tuned vocabulary. We run experiment on the ut-zappos dataset.

Training

python -u mix/mix_train.py \
  --dataset ut-zappos \
  --model ViT-L/14 \
  --experiment_name mix_csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-04 \
  --attr_dropout 0.2 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --context_length 8 \
  --save_path data/model/ut-zappos/mix_train_model_0.25 \
  --save_every_n 5 \
  --attr_keep_ratio 0.25 \
  --gradient_accumulation_steps 2

We change the --attr_keep_ratio to {0.25, 0.50, 0.75}.

Evaluation

python -u mix/evaluate_mix_train.py \
  --dataset ut-zappos \
  --soft_embeddings data/model/ut-zappos/mix_train_model_0.25/soft_embeddings.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name csp

Credits

The project uses openly available model, code, and datasets. Please see the credits.

Owner
Bats Research
Bats Research
This repository contains wordlists for each versions of common web applications and content management systems (CMS). Each version contains a wordlist of all the files directories for this version.

webapp-wordlists This repository contains wordlists for each versions of common web applications and content management systems (CMS). Each version co

Podalirius 396 Jan 08, 2023
python driver for fingerprint machine (ZKTeco biometrics)

fpmachine python driver for fingerprint machine (ZKTeco biometrics) support until now 2 model supported and tested ZMM100_TFT and ZMM220_TFT install p

Samy Sultan 4 Oct 06, 2022
A burp-suite plugin that extract all parameter names from in-scope requests

ParamsExtractor A burp-suite plugin that extract all parameters name from in-scope requests. You can run the plugin while you are working on the targe

29 Nov 09, 2022
Fuck - Multi Brute Force 🚶‍♂

f-mbf Fuck - Multi Brute Force 🚶‍♂ Install Script $ pkg update && pkg upgrade $ pkg install python2 $ pkg install git $ pip2 install requests $ pip2

Yumasaa 1 Dec 03, 2021
log4j2 dos exploit,CVE-2021-45105 exploit,Denial of Service poc

说明 about author: 我超怕的 blog: https://www.cnblogs.com/iAmSoScArEd/ github: https://github.com/iAmSOScArEd/ date: 2021-12-20 log4j2 dos exploit log4j2 do

3 Aug 13, 2022
Script to calculate Active Directory Kerberos keys (AES256 and AES128) for an account, using its plaintext password

Script to calculate Active Directory Kerberos keys (AES256 and AES128) for an account, using its plaintext password

Matt Creel 27 Dec 20, 2022
A Feature Rich Modular Malware Configuration Extraction Utility for MalDuck

Malware Configuration Extractor A Malware Configuration Extraction Tool and Modules for MalDuck This project is FREE as in FREE 🍺 , use it commercial

c3rb3ru5 103 Dec 18, 2022
Proof of Concept Exploit for vCenter CVE-2021-21972

CVE-2021-21972 Proof of Concept Exploit for vCenter CVE-2021-21972

Horizon 3 AI Inc 210 Dec 31, 2022
Signatures and IoCs from public Volexity blog posts.

threat-intel This repository contains IoCs related to Volexity public threat intelligence blog posts. They are organised by year, and within each year

Volexity 130 Dec 29, 2022
Automatically download all 10,000 CryptoPunk NFTs.

CryptoPunk Stealer The sole purpose of this script is to download the entire CryptoPunk NFT collection. How does it work? Basically, the website where

Dan 7 Oct 22, 2022
labsecurity is a framework and its use is for ethical hacking and computer security

labsecurity labsecurity is a framework and its use is for ethical hacking and computer security. Warning This tool is only for educational purpose. If

Dylan Meca 16 Dec 08, 2022
Profil3r is an OSINT tool that allows you to find potential profiles of a person on social networks, as well as their email addresses 🕵️

Profil3r is an OSINT tool that allows you to find potential profiles of a person on social networks, as well as their email addresses. This program also alerts you to the presence of a data leak for

1.1k Aug 24, 2021
Chrome Post-Exploitation is a client-server Chrome exploit to remotely allow an attacker access to Chrome passwords, downloads, history, and more.

ChromePE [Linux/Windows] Chrome Post-Exploitation is a client-server Chrome exploit to remotely allow an attacker access to Chrome passwords, download

Finn Lancaster 3 Oct 05, 2022
Program that mathematically generates and validates CPF numbers

✔️ Gerador e Validador de CPF Programa que gera e valida números de CPF Requisitos • Como usar • Capturas de Tela Requisitos Antes de começar, você va

João Victor Vilela dos Santos 1 Nov 07, 2021
Kunyu, more efficient corporate asset collection

Kunyu(坤舆) - More efficient corporate asset collection English | 中文文档 0x00 Introduce Tool introduction Kunyu (kunyu), whose name is taken from , is act

Knownsec, Inc. 772 Jan 05, 2023
windows电脑查看全部连接过的WiFi密码

python WIFI历史密码查看器 WIFI密码查看器 原理 win+R,输入cmd打开命令行窗口 #这个命令可以列出你所有连接过的wifi netsh wlan show profiles #替换你要查找的WiFi名称,就可以显示出这个wifi的所有信息,包括密码 netsh wlan show

GMYXDS 15 Dec 22, 2022
Holehe OSINT - Email to Registered Accounts

holehe allows you to check if the mail is used on different sites like twitter, instagram and will retrieve information on sites with the forgotten password function.

Palenath 3.8k Jan 06, 2023
Worm/Trojan/Ransomware/apt/Rootkit/Virus Database

Pestilence - The Malware Database [] Screenshot Pestilence is a project created to make the possibility of malware analysis open and available to the

*ERR0R* 47 Dec 21, 2022
A web-app helping to create strong passwords that are easy to remember.

This is a simple Web-App that demonstrates a method of creating strong passwords that are still easy to remember. It also provides time estimates how long it would take an attacker to crack a passwor

2 Jun 04, 2021
Industry ready custom API payload with an easy format for building Python APIs (Django/Django Rest Framework)

Industry ready custom API payload with an easy format for building Python APIs (Django/Django Rest Framework) Yosh! If you are a django backend develo

Abram (^o^) 7 Sep 30, 2022