๐Ÿค– โšก scikit-learn tips

Overview

๐Ÿค– โšก scikit-learn tips

New tips are posted on LinkedIn, Twitter, and Facebook.

๐Ÿ‘‰ Sign up to receive 2 video tips by email every week! ๐Ÿ‘ˆ

List of all tips

Click to discuss the tip on LinkedIn, click to view the Jupyter notebook for a tip, or click to watch the tip video on YouTube:

# Description Links
1 Use ColumnTransformer to apply different preprocessing to different columns
2 Seven ways to select columns using ColumnTransformer
3 What is the difference between "fit" and "transform"?
4 Use "fit_transform" on training data, but "transform" (only) on testing/new data
5 Four reasons to use scikit-learn (not pandas) for ML preprocessing
6 Encode categorical features using OneHotEncoder or OrdinalEncoder
7 Handle unknown categories with OneHotEncoder by encoding them as zeros
8 Use Pipeline to chain together multiple steps
9 Add a missing indicator to encode "missingness" as a feature
10 Set a "random_state" to make your code reproducible
11 Impute missing values using KNNImputer or IterativeImputer
12 What is the difference between Pipeline and make_pipeline?
13 Examine the intermediate steps in a Pipeline
14 HistGradientBoostingClassifier natively supports missing values
15 Three reasons not to use drop='first' with OneHotEncoder
16 Use cross_val_score and GridSearchCV on a Pipeline
17 Try RandomizedSearchCV if GridSearchCV is taking too long
18 Display GridSearchCV or RandomizedSearchCV results in a DataFrame
19 Important tuning parameters for LogisticRegression
20 Plot a confusion matrix
21 Compare multiple ROC curves in a single plot
22 Use the correct methods for each type of Pipeline
23 Display the intercept and coefficients for a linear model
24 Visualize a decision tree two different ways
25 Prune a decision tree to avoid overfitting
26 Use stratified sampling with train_test_split
27 Two ways to impute missing values for a categorical feature
28 Save a model or Pipeline using joblib
29 Vectorize two text columns in a ColumnTransformer
30 Four ways to examine the steps of a Pipeline
31 Shuffle your dataset when using cross_val_score
32 Use AUC to evaluate multiclass problems
33 Use FunctionTransformer to convert functions into transformers
34 Add feature selection to a Pipeline
35 Don't use .values when passing a pandas object to scikit-learn
36 Most parameters should be passed as keyword arguments
37 Create an interactive diagram of a Pipeline in Jupyter
38 Get the feature names output by a ColumnTransformer
39 Load a toy dataset into a DataFrame
40 Estimators only print parameters that have been changed
41 Drop the first category from binary features (only) with OneHotEncoder
42 Passthrough some columns and drop others in a ColumnTransformer
43 Use OrdinalEncoder instead of OneHotEncoder with tree-based models
44 Speed up GridSearchCV using parallel processing
45 Create feature interactions using PolynomialFeatures
46 Ensemble multiple models using VotingClassifer or VotingRegressor
47 Tune the parameters of a VotingClassifer or VotingRegressor
48 Access part of a Pipeline using slicing
49 Tune multiple models simultaneously with GridSearchCV
50 Adapt this pattern to solve many Machine Learning problems

You can interact with all of these notebooks online using Binder:

Note: Some of the tips do not include any code, and can only be viewed on LinkedIn.

Who creates these tips?

Hi! I'm Kevin Markham, the founder of Data School. I've been teaching data science in Python since 2014. I create these tips because I love using scikit-learn and I want to help others use it more effectively.

How can I get better at scikit-learn?

I teach three courses:

๐Ÿ‘‰ Find out which course is right for you! ๐Ÿ‘ˆ

Do you have any other tips?

Yes! In 2019, I posted 100 pandas tricks. I also created a video featuring my top 25 pandas tricks.

ยฉ 2020-2021 Data School. All rights reserved.

Owner
Kevin Markham
Founder of Data School
Kevin Markham
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs ยป Report Bug ยท Request Feature Table of Co

Will Fong 2 Dec 10, 2021
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started โ€ข Features & Screenshots โ€ข Support โ€ข Report a Bug โ€ข FAQ โ€ข Known Issu

3 Feb 03, 2021
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Lightweight Machine Learning Experiment Logging ๐Ÿ“–

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022