🤖 ⚡ scikit-learn tips

Overview

🤖 ⚡ scikit-learn tips

New tips are posted on LinkedIn, Twitter, and Facebook.

👉 Sign up to receive 2 video tips by email every week! 👈

List of all tips

Click to discuss the tip on LinkedIn, click to view the Jupyter notebook for a tip, or click to watch the tip video on YouTube:

# Description Links
1 Use ColumnTransformer to apply different preprocessing to different columns
2 Seven ways to select columns using ColumnTransformer
3 What is the difference between "fit" and "transform"?
4 Use "fit_transform" on training data, but "transform" (only) on testing/new data
5 Four reasons to use scikit-learn (not pandas) for ML preprocessing
6 Encode categorical features using OneHotEncoder or OrdinalEncoder
7 Handle unknown categories with OneHotEncoder by encoding them as zeros
8 Use Pipeline to chain together multiple steps
9 Add a missing indicator to encode "missingness" as a feature
10 Set a "random_state" to make your code reproducible
11 Impute missing values using KNNImputer or IterativeImputer
12 What is the difference between Pipeline and make_pipeline?
13 Examine the intermediate steps in a Pipeline
14 HistGradientBoostingClassifier natively supports missing values
15 Three reasons not to use drop='first' with OneHotEncoder
16 Use cross_val_score and GridSearchCV on a Pipeline
17 Try RandomizedSearchCV if GridSearchCV is taking too long
18 Display GridSearchCV or RandomizedSearchCV results in a DataFrame
19 Important tuning parameters for LogisticRegression
20 Plot a confusion matrix
21 Compare multiple ROC curves in a single plot
22 Use the correct methods for each type of Pipeline
23 Display the intercept and coefficients for a linear model
24 Visualize a decision tree two different ways
25 Prune a decision tree to avoid overfitting
26 Use stratified sampling with train_test_split
27 Two ways to impute missing values for a categorical feature
28 Save a model or Pipeline using joblib
29 Vectorize two text columns in a ColumnTransformer
30 Four ways to examine the steps of a Pipeline
31 Shuffle your dataset when using cross_val_score
32 Use AUC to evaluate multiclass problems
33 Use FunctionTransformer to convert functions into transformers
34 Add feature selection to a Pipeline
35 Don't use .values when passing a pandas object to scikit-learn
36 Most parameters should be passed as keyword arguments
37 Create an interactive diagram of a Pipeline in Jupyter
38 Get the feature names output by a ColumnTransformer
39 Load a toy dataset into a DataFrame
40 Estimators only print parameters that have been changed
41 Drop the first category from binary features (only) with OneHotEncoder
42 Passthrough some columns and drop others in a ColumnTransformer
43 Use OrdinalEncoder instead of OneHotEncoder with tree-based models
44 Speed up GridSearchCV using parallel processing
45 Create feature interactions using PolynomialFeatures
46 Ensemble multiple models using VotingClassifer or VotingRegressor
47 Tune the parameters of a VotingClassifer or VotingRegressor
48 Access part of a Pipeline using slicing
49 Tune multiple models simultaneously with GridSearchCV
50 Adapt this pattern to solve many Machine Learning problems

You can interact with all of these notebooks online using Binder:

Note: Some of the tips do not include any code, and can only be viewed on LinkedIn.

Who creates these tips?

Hi! I'm Kevin Markham, the founder of Data School. I've been teaching data science in Python since 2014. I create these tips because I love using scikit-learn and I want to help others use it more effectively.

How can I get better at scikit-learn?

I teach three courses:

👉 Find out which course is right for you! 👈

Do you have any other tips?

Yes! In 2019, I posted 100 pandas tricks. I also created a video featuring my top 25 pandas tricks.

© 2020-2021 Data School. All rights reserved.

Owner
Kevin Markham
Founder of Data School
Kevin Markham
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022