Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Overview

Curso em Vídeo - Exercícios de Python 3

Sobre o repositório

Este repositório contém os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3.

Até o presente momento, o curso possui 3 módulos chamados de Mundos. As listas de vídeos de cada um dos Mundos com as aulas teóricas e os respectivos exercícios encontra-se abaixo:

  1. Mundo 1: Fundamentos
  2. Mundo 2: Estruturas de Controle
  3. Mundo 3: Estruturas Compostas

A lista dos vídeos contendo "apenas" (são mais de 100!) os exercícios e as suas resoluções é: Exercícios de Python 3

Usando o Google Colab para fazer os exercícios

A ideia desse repositório é criar um notebook com a lista de exercícios de cada um dos Mundos do curso. Desta forma é possível importar esses notebooks para o ambiente do Google Colab e assim conseguir executar os códigos em Python sem a necessidade de uma instalação/configuração local do Python no computador.

Para isso, siga o seguinte passo a passo:

Passo 1

Copie o endereço deste repositório abaixo. Ele é o mesmo que está na barra de endereços do seu navegador conforme a Tela 1.

https://github.com/jplpereira/curso-em-video-exercicios-python

Tela 1

Passo 2

Abra o Google Colab clicando aqui. Ele vai apresentar as opções conforme a Tela 2 abaixo:

Tela 2

Passo 3

Selecione a opção GitHub, cole o link na caixa de texto e clique no botão da lupa. A lista de notebooks será atualizada. Ao lado de cada um deles, aparecerá o botão "Abrir notebook em uma nova guia" conforme a Tela 3 abaixo. Ele fará com que uma cópia do notebook selecionado seja adicionada no seu Google Drive.

Tela 3

Passo 4

O notebook vai abrir em uma nova guia do seu navegador pronto para você usar conforme a Tela 4.

Tela 4

Passo 5

Caso esteja logado com a sua conta do GitHub, clique no botão Star para ajudar esse repositório a ter mais visibilidade dentro da plataforma e chegar a mais pessoas interessadas em aprender Python.

Tela 5

Divirta-se assistindo as aulas do professor Guanabara e resolvendo os exercícios propostos. Espero que esse trabalho te ajude na sua jornada de aprendizado do Python!

Owner
João Pedro Pereira
João Pedro Pereira
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023