[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

Related tags

Deep LearningDoDNet
Overview

DoDNet

This repo holds the pytorch implementation of DoDNet:

DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets. (https://arxiv.org/pdf/2011.10217.pdf)

Requirements

Python 3.7
PyTorch==1.4.0
Apex==0.1
batchgenerators

Usage

0. Installation

  • Clone this repo
git clone https://github.com/jianpengz/DoDNet.git
cd DoDNet

1. MOTS Dataset Preparation

Before starting, MOTS should be re-built from the serveral medical organ and tumor segmentation datasets

Partial-label task Data source
Liver data
Kidney data
Hepatic Vessel data
Pancreas data
Colon data
Lung data
Spleen data
  • Download and put these datasets in dataset/0123456/.
  • Re-spacing the data by python re_spacing.py, the re-spaced data will be saved in 0123456_spacing_same/.

The folder structure of dataset should be like

dataset/0123456_spacing_same/
├── 0Liver
|    └── imagesTr
|        ├── liver_0.nii.gz
|        ├── liver_1.nii.gz
|        ├── ...
|    └── labelsTr
|        ├── liver_0.nii.gz
|        ├── liver_1.nii.gz
|        ├── ...
├── 1Kidney
├── ...

2. Model

Pretrained model is available in checkpoint

3. Training

  • cd `a_DynConv/' and run
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=$RANDOM train.py \
--train_list='list/MOTS/MOTS_train.txt' \
--snapshot_dir='snapshots/dodnet' \
--input_size='64,192,192' \
--batch_size=2 \
--num_gpus=2 \
--num_epochs=1000 \
--start_epoch=0 \
--learning_rate=1e-2 \
--num_classes=2 \
--num_workers=8 \
--weight_std=True \
--random_mirror=True \
--random_scale=True \
--FP16=False

4. Evaluation

CUDA_VISIBLE_DEVICES=0 python evaluate.py \
--val_list='list/MOTS/MOTS_test.txt' \
--reload_from_checkpoint=True \
--reload_path='snapshots/dodnet/MOTS_DynConv_checkpoint.pth' \
--save_path='outputs/' \
--input_size='64,192,192' \
--batch_size=1 \
--num_gpus=1 \
--num_workers=2

5. Post-processing

python postp.py --img_folder_path='outputs/dodnet/'

6. Citation

If this code is helpful for your study, please cite:

@inproceedings{zhang2021dodnet,
  title={DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets},
  author={Zhang, Jianpeng and Xie, Yutong and Xia, Yong and Shen, Chunhua},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={},
  year={2021}
}

Contact

Jianpeng Zhang ([email protected])

Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023