Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks

Overview

SupCon-Framework

The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies:

  • Fixed bugs (incorrect ResNet implementations, which leads to a very small max batch size),
  • Offers a lot of additional functionality (first of all, rich validation).

To be more precise, in this implementations you will find:

  • Augmentations with albumentations
  • Hyperparameters are moved to .yml configs
  • t-SNE visualizations
  • 2-step validation (for features before and after the projection head) using metrics like AMI, NMI, mAP, precision_at_1, etc with PyTorch Metric Learning.
  • Exponential Moving Average for a more stable training, and Stochastic Moving Average for a better generalization and just overall performance.
  • Automatic Mixed Precision (torch version) training in order to be able to train with a bigger batch size (roughly by a factor of 2).
  • LabelSmoothing loss, and LRFinder for the second stage of the training (FC).
  • TensorBoard logs, checkpoints
  • Support of timm models, and pytorch-optimizer

Install

  1. Clone the repo:
git clone https://github.com/ivanpanshin/SupCon-Framework && cd SupCon-Framework/
  1. Create a clean virtual environment
python3 -m venv venv
source venv/bin/activate
  1. Install dependencies
python -m pip install --upgrade pip
pip install -r requirements.txt

Training

In order to execute Cifar10 training run:

python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage1.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage1.yml
python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage2.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage2.yml

In order to run LRFinder on the second stage of the training, run:

python learning_rate_finder.py --config_name configs/train/lr_finder_supcon_resnet18_cifar10_stage2.yml

The process of training Cifar100 is exactly the same, just change config names from cifar10 to cifar100.

After that you can check the results of the training either in logs or runs directory. For example, in order to check tensorboard logs for the first stage of Cifar10 training, run:

tensorboard --logdir runs/supcon_first_stage_cifar10

Visualizations

This repo is supplied with t-SNE visualizations so that you can check embeddings you get after the training. Check t-SNE.ipynb for details.

Those are t-SNE visualizations for Cifar10 for validation and train with SupCon (top), and validation and train with CE (bottom).

Those are t-SNE visualizations for Cifar100 for validation and train with SupCon (top), and validation and train with CE (bottom).

Results

Model Stage Dataset Accuracy
ResNet18 Frist CIFAR10 95.9
ResNet18 Second CIFAR10 94.9
ResNet18 Frist CIFAR100 79.0
ResNet18 Second CIFAR100 77.9

Note that even though the accuracy on the second stage is lower, it's not always the case. In my experience, the difference between stages is usually around 1 percent, including the difference that favors the second stage.

Training time for the whole pipeline (without any early stopping) on CIFAR10 or CIFAR100 is around 4 hours (single 2080Ti with AMP). However, with reasonable early stopping that value goes down to around 2.5-3 hours.

Custom datasets

It's fairly easy to adapt this pipeline to custom datasets. First, you need to check tools/datasets.py for that. Second, add a new class for your dataset. The only guideline here is to follow the same augmentation logic, that is

        if self.second_stage:
            image = self.transform(image=image)['image']
        else:
            image = self.transform(image)

Third, add your dataset to DATASETS dict still inside tools/datasets.py, and you're good to go.

FAQ

  • Q: What hyperparameters I should try to change?

    A: First of all, learning rate. Second of all, try to change the augmentation policy. SupCon is build around "cropping + color jittering" scheme, so you can try changing the cropping size or the intensity of jittering. Check tools.utils.build_transforms for that.

  • Q: What backbone and batch size should I use?

    A: This is quite simple. Take the biggest backbone you can, and after that take the highest batch size your GPU can offer. The reason for that: SupCon is more prone (than regular classification training with CE/LabelSmoothing/etc) to improving with stronger backbones. Moverover, it has a property of explicit hard positive and negative mining. It means that the higher the batch size - the more difficult and helpful samples you supply to your model.

  • Q: Do I need the second stage of the training?

    A: Not necessarily. You can do classification based only on embeddings. In order to do that compute embeddings for the train set, and at inference time do the following: take a sample, compute its embedding, take the closest one from the training, take its class. To make this fast and efficient, you something like faiss for similarity search. Note that this is actually how validation is done in this repo. Moveover, during training you will see a metric precision_at_1. This is actually just accuracy based solely on embeddings.

  • Q: Should I use AMP?

    A: If your GPU has tensor cores (like 2080Ti) - yes. If it doesn't (like 1080Ti) - check the speed with AMP and without. If the speed dropped slightly (or even increased by a bit) - use it, since SupCon works better with bigger batch sizes.

  • Q: How should I use EMA?

    A: You only need to choose the ema_decay_per_epoch parameter in the config. The heuristic is fairly simple. If your dataset is big, then something as small as 0.3 will do just fine. And as your dataset gets smaller, you can increase ema_decay_per_epoch. Thanks to bonlime for this idea. I advice you to check his great pytorch tools repo, it's a hidden gem.

  • Q: Is it better than training with Cross Entropy/Label Smoothing/etc?

    A: Unfortunately, in my experience, it's much easier to get better results with something like CE. It's more stable, faster to train, and simply produces better or the same results. For instance, in case on CIFAR10/100 it's trivial to train ResNet18 up tp 96/81 percent respectively. Of cource, I've seen cased where SupCon performs better, but it takes quite a bit of work to make it outperform CE.

  • Q: How long should I train with SupCon?

    A: The answer is tricky. On one hand, authors of the original paper claim that the longer you train with SupCon, the better it gets. However, I did not observe such a behavior in my tests. So the only recommendation I can give is the following: start with 100 epochs for easy datasets (like CIFAR10/100), and 1000 for more industrial ones. Then - monitor the training process. If the validaton metric (such as precision_at_1) doesn't impove for several dozens of epochs - you can stop the training. You might incorporate early stopping for this reason into the pipeline.

Owner
Ivan Panshin
Machine Learning Engineer: CV, NLP, tabular data. Kaggle (top 0.003% worldwide) and Open Source
Ivan Panshin
A flask extension for managing permissions and scopes

Flask-Pundit A simple flask extension to organize resource authorization and scoping. This extension is heavily inspired by the ruby Pundit library. I

Anurag Chaudhury 49 Dec 23, 2022
A generic, spec-compliant, thorough implementation of the OAuth request-signing logic

OAuthLib - Python Framework for OAuth1 & OAuth2 *A generic, spec-compliant, thorough implementation of the OAuth request-signing logic for Python 3.5+

OAuthlib 2.5k Jan 01, 2023
OAuth2 goodies for the Djangonauts!

Django OAuth Toolkit OAuth2 goodies for the Djangonauts! If you are facing one or more of the following: Your Django app exposes a web API you want to

Jazzband 2.7k Jan 01, 2023
Python's simple login system concept - Advanced level

Simple login system with Python - For beginners Creating a simple login system using python for beginners this repository aims to provide a simple ove

Low_Scarlet 1 Dec 13, 2021
Storefront - A store App developed using Django, RESTFul API, JWT

Storefront A store App developed using Django, RESTFul API, JWT. SQLite has been

Muhammad Algshy 1 Jan 07, 2022
Python module for generating and verifying JSON Web Tokens

python-jwt Module for generating and verifying JSON Web Tokens. Note: From version 2.0.1 the namespace has changed from jwt to python_jwt, in order to

David Halls 210 Dec 24, 2022
Simple implementation of authentication in projects using FastAPI

Fast Auth Facilita implementação de um sistema de autenticação básico e uso de uma sessão de banco de dados em projetos com tFastAPi. Instalação e con

3 Jan 08, 2022
This app makes it extremely easy to build Django powered SPA's (Single Page App) or Mobile apps exposing all registration and authentication related functionality as CBV's (Class Base View) and REST (JSON)

Welcome to django-rest-auth Repository is unmaintained at the moment (on pause). More info can be found on this issue page: https://github.com/Tivix/d

Tivix 2.4k Jan 03, 2023
A Python library for OAuth 1.0/a, 2.0, and Ofly.

Rauth A simple Python OAuth 1.0/a, OAuth 2.0, and Ofly consumer library built on top of Requests. Features Supports OAuth 1.0/a, 2.0 and Ofly Service

litl 1.6k Dec 08, 2022
Authentication Module for django rest auth

django-rest-knox Authentication Module for django rest auth Knox provides easy to use authentication for Django REST Framework The aim is to allow for

James McMahon 878 Jan 04, 2023
Django Admin Two-Factor Authentication, allows you to login django admin with google authenticator.

Django Admin Two-Factor Authentication Django Admin Two-Factor Authentication, allows you to login django admin with google authenticator. Why Django

Iman Karimi 9 Dec 07, 2022
Python One-Time Password Library

PyOTP - The Python One-Time Password Library PyOTP is a Python library for generating and verifying one-time passwords. It can be used to implement tw

PyAuth 2.2k Dec 26, 2022
Web authentication testing framework

What is this This is a framework designed to test authentication for web applications. While web proxies like ZAProxy and Burpsuite allow authenticate

OWASP 88 Jan 01, 2023
This project is an open-source project which I made due to sharing my experience around the Python programming language.

django-tutorial This project is an open-source project which I made due to sharing my experience around the Django framework. What is Django? Django i

MohammadMasoumi 6 May 12, 2022
🔐 Login & Register System

🔐 Login & Register System This is a developable login and register system. Enter your username and password to register or login to account. Automati

Firdevs Akbayır 10 Dec 12, 2022
Toolkit for Pyramid, a Pylons Project, to add Authentication and Authorization using Velruse (OAuth) and/or a local database, CSRF, ReCaptcha, Sessions, Flash messages and I18N

Apex Authentication, Form Library, I18N/L10N, Flash Message Template (not associated with Pyramid, a Pylons project) Uses alchemy Authentication Authe

95 Nov 28, 2022
Django server for Travel Mate (Project: nomad)

Travel Mate Server (Project: Nomad) Django 2.0 server for Travel Mate Contribute For new feature request in the app, open a new feature request on the

Travel Mate 41 May 29, 2022
FastAPI Simple authentication & Login API using GraphQL and JWT

JeffQL A Simple FastAPI authentication & Login API using GraphQL and JWT. I choose this Name JeffQL cause i have a Low level Friend with a Nickname Je

Yasser Tahiri 26 Nov 24, 2022
Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.

Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.

Intility 220 Jan 05, 2023
A Python library to create and validate authentication tokens

handshake A Python library to create and validate authentication tokens. handshake is used to generate and validate arbitrary authentication tokens th

0 Apr 26, 2022