Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks

Overview

SupCon-Framework

The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies:

  • Fixed bugs (incorrect ResNet implementations, which leads to a very small max batch size),
  • Offers a lot of additional functionality (first of all, rich validation).

To be more precise, in this implementations you will find:

  • Augmentations with albumentations
  • Hyperparameters are moved to .yml configs
  • t-SNE visualizations
  • 2-step validation (for features before and after the projection head) using metrics like AMI, NMI, mAP, precision_at_1, etc with PyTorch Metric Learning.
  • Exponential Moving Average for a more stable training, and Stochastic Moving Average for a better generalization and just overall performance.
  • Automatic Mixed Precision (torch version) training in order to be able to train with a bigger batch size (roughly by a factor of 2).
  • LabelSmoothing loss, and LRFinder for the second stage of the training (FC).
  • TensorBoard logs, checkpoints
  • Support of timm models, and pytorch-optimizer

Install

  1. Clone the repo:
git clone https://github.com/ivanpanshin/SupCon-Framework && cd SupCon-Framework/
  1. Create a clean virtual environment
python3 -m venv venv
source venv/bin/activate
  1. Install dependencies
python -m pip install --upgrade pip
pip install -r requirements.txt

Training

In order to execute Cifar10 training run:

python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage1.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage1.yml
python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage2.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage2.yml

In order to run LRFinder on the second stage of the training, run:

python learning_rate_finder.py --config_name configs/train/lr_finder_supcon_resnet18_cifar10_stage2.yml

The process of training Cifar100 is exactly the same, just change config names from cifar10 to cifar100.

After that you can check the results of the training either in logs or runs directory. For example, in order to check tensorboard logs for the first stage of Cifar10 training, run:

tensorboard --logdir runs/supcon_first_stage_cifar10

Visualizations

This repo is supplied with t-SNE visualizations so that you can check embeddings you get after the training. Check t-SNE.ipynb for details.

Those are t-SNE visualizations for Cifar10 for validation and train with SupCon (top), and validation and train with CE (bottom).

Those are t-SNE visualizations for Cifar100 for validation and train with SupCon (top), and validation and train with CE (bottom).

Results

Model Stage Dataset Accuracy
ResNet18 Frist CIFAR10 95.9
ResNet18 Second CIFAR10 94.9
ResNet18 Frist CIFAR100 79.0
ResNet18 Second CIFAR100 77.9

Note that even though the accuracy on the second stage is lower, it's not always the case. In my experience, the difference between stages is usually around 1 percent, including the difference that favors the second stage.

Training time for the whole pipeline (without any early stopping) on CIFAR10 or CIFAR100 is around 4 hours (single 2080Ti with AMP). However, with reasonable early stopping that value goes down to around 2.5-3 hours.

Custom datasets

It's fairly easy to adapt this pipeline to custom datasets. First, you need to check tools/datasets.py for that. Second, add a new class for your dataset. The only guideline here is to follow the same augmentation logic, that is

        if self.second_stage:
            image = self.transform(image=image)['image']
        else:
            image = self.transform(image)

Third, add your dataset to DATASETS dict still inside tools/datasets.py, and you're good to go.

FAQ

  • Q: What hyperparameters I should try to change?

    A: First of all, learning rate. Second of all, try to change the augmentation policy. SupCon is build around "cropping + color jittering" scheme, so you can try changing the cropping size or the intensity of jittering. Check tools.utils.build_transforms for that.

  • Q: What backbone and batch size should I use?

    A: This is quite simple. Take the biggest backbone you can, and after that take the highest batch size your GPU can offer. The reason for that: SupCon is more prone (than regular classification training with CE/LabelSmoothing/etc) to improving with stronger backbones. Moverover, it has a property of explicit hard positive and negative mining. It means that the higher the batch size - the more difficult and helpful samples you supply to your model.

  • Q: Do I need the second stage of the training?

    A: Not necessarily. You can do classification based only on embeddings. In order to do that compute embeddings for the train set, and at inference time do the following: take a sample, compute its embedding, take the closest one from the training, take its class. To make this fast and efficient, you something like faiss for similarity search. Note that this is actually how validation is done in this repo. Moveover, during training you will see a metric precision_at_1. This is actually just accuracy based solely on embeddings.

  • Q: Should I use AMP?

    A: If your GPU has tensor cores (like 2080Ti) - yes. If it doesn't (like 1080Ti) - check the speed with AMP and without. If the speed dropped slightly (or even increased by a bit) - use it, since SupCon works better with bigger batch sizes.

  • Q: How should I use EMA?

    A: You only need to choose the ema_decay_per_epoch parameter in the config. The heuristic is fairly simple. If your dataset is big, then something as small as 0.3 will do just fine. And as your dataset gets smaller, you can increase ema_decay_per_epoch. Thanks to bonlime for this idea. I advice you to check his great pytorch tools repo, it's a hidden gem.

  • Q: Is it better than training with Cross Entropy/Label Smoothing/etc?

    A: Unfortunately, in my experience, it's much easier to get better results with something like CE. It's more stable, faster to train, and simply produces better or the same results. For instance, in case on CIFAR10/100 it's trivial to train ResNet18 up tp 96/81 percent respectively. Of cource, I've seen cased where SupCon performs better, but it takes quite a bit of work to make it outperform CE.

  • Q: How long should I train with SupCon?

    A: The answer is tricky. On one hand, authors of the original paper claim that the longer you train with SupCon, the better it gets. However, I did not observe such a behavior in my tests. So the only recommendation I can give is the following: start with 100 epochs for easy datasets (like CIFAR10/100), and 1000 for more industrial ones. Then - monitor the training process. If the validaton metric (such as precision_at_1) doesn't impove for several dozens of epochs - you can stop the training. You might incorporate early stopping for this reason into the pipeline.

Owner
Ivan Panshin
Machine Learning Engineer: CV, NLP, tabular data. Kaggle (top 0.003% worldwide) and Open Source
Ivan Panshin
A fully tested, abstract interface to creating OAuth clients and servers.

Note: This library implements OAuth 1.0 and not OAuth 2.0. Overview python-oauth2 is a python oauth library fully compatible with python versions: 2.6

Joe Stump 3k Jan 02, 2023
Django Admin Two-Factor Authentication, allows you to login django admin with google authenticator.

Django Admin Two-Factor Authentication Django Admin Two-Factor Authentication, allows you to login django admin with google authenticator. Why Django

Iman Karimi 9 Dec 07, 2022
CheckList-Api - Created with django rest framework and JWT(Json Web Tokens for Authentication)

CheckList Api created with django rest framework and JWT(Json Web Tokens for Aut

shantanu nimkar 1 Jan 24, 2022
Foundation Auth Proxy is an abstraction on Foundations' authentication layer and is used to authenticate requests to Atlas's REST API.

foundations-auth-proxy Setup By default the server runs on http://0.0.0.0:5558. This can be changed via the arguments. Arguments: '-H' or '--host': ho

Dessa - Open Source 2 Jul 03, 2020
it's a Django application to register and authenticate users using phone number.

django-phone-auth It's a Django application to register and authenticate users using phone number. CustomUser model created using AbstractUser class.

MsudD 4 Nov 29, 2022
A secure authentication module to validate user credentials in a Streamlit application.

Streamlit-Authenticator A secure authentication module to validate user credentials in a Streamlit application. Installation Streamlit-Authenticator i

M Khorasani 336 Dec 31, 2022
Customizable User Authorization & User Management: Register, Confirm, Login, Change username/password, Forgot password and more.

Flask-User v1.0 Attention: Flask-User v1.0 is a Production/Stable version. The previous version is Flask-User v0.6. User Authentication and Management

Ling Thio 997 Jan 06, 2023
Local server that gives you your OAuth 2.0 tokens needed to interact with the Conta Azul's API

What's this? This is a django project meant to be run locally that gives you your OAuth 2.0 tokens needed to interact with Conta Azul's API Prerequisi

Fábio David Freitas 3 Apr 13, 2022
Ready to use and customizable Authentications and Authorisation management for FastAPI ⚡

AuthenticationX 💫 Ready-to-use and customizable Authentications and Oauth2 management for FastAPI ⚡ Source Code: https://github.com/yezz123/AuthX Doc

Yasser Tahiri 404 Dec 27, 2022
OAuthlib support for Python-Requests!

Requests-OAuthlib This project provides first-class OAuth library support for Requests. The OAuth 1 workflow OAuth 1 can seem overly complicated and i

1.6k Dec 28, 2022
FastAPI extension that provides JWT Auth support (secure, easy to use, and lightweight)

FastAPI JWT Auth Documentation: https://indominusbyte.github.io/fastapi-jwt-auth Source Code: https://github.com/IndominusByte/fastapi-jwt-auth Featur

Nyoman Pradipta Dewantara 468 Jan 01, 2023
This is a Token tool that gives you many options to harm the account.

Trabis-Token-Tool This is a Token tool that gives you many options to harm the account. Utilities With this tools you can do things as : ·Delete all t

Steven 2 Feb 13, 2022
FastAPI-Login tries to provide similar functionality as Flask-Login does.

FastAPI-Login FastAPI-Login tries to provide similar functionality as Flask-Login does. Installation $ pip install fastapi-login Usage To begin we hav

417 Jan 07, 2023
Simple implementation of authentication in projects using FastAPI

Fast Auth Facilita implementação de um sistema de autenticação básico e uso de uma sessão de banco de dados em projetos com tFastAPi. Instalação e con

3 Jan 08, 2022
Basic auth for Django.

Basic auth for Django.

bichanna 2 Mar 25, 2022
Toolkit for Pyramid, a Pylons Project, to add Authentication and Authorization using Velruse (OAuth) and/or a local database, CSRF, ReCaptcha, Sessions, Flash messages and I18N

Apex Authentication, Form Library, I18N/L10N, Flash Message Template (not associated with Pyramid, a Pylons project) Uses alchemy Authentication Authe

95 Nov 28, 2022
Plotly Dash plugin to allow authentication through 3rd party OAuth providers.

dash-auth-external Integrate your dashboards with 3rd parties and external OAuth providers. Overview Do you want to build a Plotly Dash app which pull

James Holcombe 15 Dec 11, 2022
Get inside your stronghold and make all your Django views default login_required

Stronghold Get inside your stronghold and make all your Django views default login_required Stronghold is a very small and easy to use django app that

Mike Grouchy 384 Nov 23, 2022
FastAPI Simple authentication & Login API using GraphQL and JWT

JeffQL A Simple FastAPI authentication & Login API using GraphQL and JWT. I choose this Name JeffQL cause i have a Low level Friend with a Nickname Je

Yasser Tahiri 26 Nov 24, 2022
Social auth made simple

Python Social Auth Python Social Auth is an easy-to-setup social authentication/registration mechanism with support for several frameworks and auth pr

Matías Aguirre 2.8k Dec 24, 2022