Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks

Overview

SupCon-Framework

The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies:

  • Fixed bugs (incorrect ResNet implementations, which leads to a very small max batch size),
  • Offers a lot of additional functionality (first of all, rich validation).

To be more precise, in this implementations you will find:

  • Augmentations with albumentations
  • Hyperparameters are moved to .yml configs
  • t-SNE visualizations
  • 2-step validation (for features before and after the projection head) using metrics like AMI, NMI, mAP, precision_at_1, etc with PyTorch Metric Learning.
  • Exponential Moving Average for a more stable training, and Stochastic Moving Average for a better generalization and just overall performance.
  • Automatic Mixed Precision (torch version) training in order to be able to train with a bigger batch size (roughly by a factor of 2).
  • LabelSmoothing loss, and LRFinder for the second stage of the training (FC).
  • TensorBoard logs, checkpoints
  • Support of timm models, and pytorch-optimizer

Install

  1. Clone the repo:
git clone https://github.com/ivanpanshin/SupCon-Framework && cd SupCon-Framework/
  1. Create a clean virtual environment
python3 -m venv venv
source venv/bin/activate
  1. Install dependencies
python -m pip install --upgrade pip
pip install -r requirements.txt

Training

In order to execute Cifar10 training run:

python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage1.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage1.yml
python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage2.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage2.yml

In order to run LRFinder on the second stage of the training, run:

python learning_rate_finder.py --config_name configs/train/lr_finder_supcon_resnet18_cifar10_stage2.yml

The process of training Cifar100 is exactly the same, just change config names from cifar10 to cifar100.

After that you can check the results of the training either in logs or runs directory. For example, in order to check tensorboard logs for the first stage of Cifar10 training, run:

tensorboard --logdir runs/supcon_first_stage_cifar10

Visualizations

This repo is supplied with t-SNE visualizations so that you can check embeddings you get after the training. Check t-SNE.ipynb for details.

Those are t-SNE visualizations for Cifar10 for validation and train with SupCon (top), and validation and train with CE (bottom).

Those are t-SNE visualizations for Cifar100 for validation and train with SupCon (top), and validation and train with CE (bottom).

Results

Model Stage Dataset Accuracy
ResNet18 Frist CIFAR10 95.9
ResNet18 Second CIFAR10 94.9
ResNet18 Frist CIFAR100 79.0
ResNet18 Second CIFAR100 77.9

Note that even though the accuracy on the second stage is lower, it's not always the case. In my experience, the difference between stages is usually around 1 percent, including the difference that favors the second stage.

Training time for the whole pipeline (without any early stopping) on CIFAR10 or CIFAR100 is around 4 hours (single 2080Ti with AMP). However, with reasonable early stopping that value goes down to around 2.5-3 hours.

Custom datasets

It's fairly easy to adapt this pipeline to custom datasets. First, you need to check tools/datasets.py for that. Second, add a new class for your dataset. The only guideline here is to follow the same augmentation logic, that is

        if self.second_stage:
            image = self.transform(image=image)['image']
        else:
            image = self.transform(image)

Third, add your dataset to DATASETS dict still inside tools/datasets.py, and you're good to go.

FAQ

  • Q: What hyperparameters I should try to change?

    A: First of all, learning rate. Second of all, try to change the augmentation policy. SupCon is build around "cropping + color jittering" scheme, so you can try changing the cropping size or the intensity of jittering. Check tools.utils.build_transforms for that.

  • Q: What backbone and batch size should I use?

    A: This is quite simple. Take the biggest backbone you can, and after that take the highest batch size your GPU can offer. The reason for that: SupCon is more prone (than regular classification training with CE/LabelSmoothing/etc) to improving with stronger backbones. Moverover, it has a property of explicit hard positive and negative mining. It means that the higher the batch size - the more difficult and helpful samples you supply to your model.

  • Q: Do I need the second stage of the training?

    A: Not necessarily. You can do classification based only on embeddings. In order to do that compute embeddings for the train set, and at inference time do the following: take a sample, compute its embedding, take the closest one from the training, take its class. To make this fast and efficient, you something like faiss for similarity search. Note that this is actually how validation is done in this repo. Moveover, during training you will see a metric precision_at_1. This is actually just accuracy based solely on embeddings.

  • Q: Should I use AMP?

    A: If your GPU has tensor cores (like 2080Ti) - yes. If it doesn't (like 1080Ti) - check the speed with AMP and without. If the speed dropped slightly (or even increased by a bit) - use it, since SupCon works better with bigger batch sizes.

  • Q: How should I use EMA?

    A: You only need to choose the ema_decay_per_epoch parameter in the config. The heuristic is fairly simple. If your dataset is big, then something as small as 0.3 will do just fine. And as your dataset gets smaller, you can increase ema_decay_per_epoch. Thanks to bonlime for this idea. I advice you to check his great pytorch tools repo, it's a hidden gem.

  • Q: Is it better than training with Cross Entropy/Label Smoothing/etc?

    A: Unfortunately, in my experience, it's much easier to get better results with something like CE. It's more stable, faster to train, and simply produces better or the same results. For instance, in case on CIFAR10/100 it's trivial to train ResNet18 up tp 96/81 percent respectively. Of cource, I've seen cased where SupCon performs better, but it takes quite a bit of work to make it outperform CE.

  • Q: How long should I train with SupCon?

    A: The answer is tricky. On one hand, authors of the original paper claim that the longer you train with SupCon, the better it gets. However, I did not observe such a behavior in my tests. So the only recommendation I can give is the following: start with 100 epochs for easy datasets (like CIFAR10/100), and 1000 for more industrial ones. Then - monitor the training process. If the validaton metric (such as precision_at_1) doesn't impove for several dozens of epochs - you can stop the training. You might incorporate early stopping for this reason into the pipeline.

Owner
Ivan Panshin
Machine Learning Engineer: CV, NLP, tabular data. Kaggle (top 0.003% worldwide) and Open Source
Ivan Panshin
Per object permissions for Django

django-guardian django-guardian is an implementation of per object permissions [1] on top of Django's authorization backend Documentation Online docum

3.3k Jan 01, 2023
Flask App With Login

Flask App With Login by FranciscoCharles Este projeto basico é o resultado do estudos de algumas funcionalidades do micro framework Flask do Python. O

Charles 3 Nov 14, 2021
User-related REST API based on the awesome Django REST Framework

Django REST Registration User registration REST API, based on Django REST Framework. Documentation Full documentation for the project is available at

Andrzej Pragacz 399 Jan 03, 2023
Google Auth Python Library

Google Auth Python Library This library simplifies using Google's various server-to-server authentication mechanisms to access Google APIs. Installing

Google APIs 598 Jan 07, 2023
Django Auth Protection This package logout users from the system by changing the password in Simple JWT REST API.

Django Auth Protection Django Auth Protection This package logout users from the system by changing the password in REST API. Why Django Auth Protecti

Iman Karimi 5 Oct 26, 2022
This project is an open-source project which I made due to sharing my experience around the Python programming language.

django-tutorial This project is an open-source project which I made due to sharing my experience around the Django framework. What is Django? Django i

MohammadMasoumi 6 May 12, 2022
This script helps you log in to your LMS account and enter the currently running session

This script helps you log in to your LMS account and enter the currently running session, all in a second

Ali Ebrahimi 5 Sep 01, 2022
MikroTik Authentication POCs

Proofs of concept which successfully authenticate with MikroTik Winbox and MAC Telnet servers running on RouterOS version 6.45.1+

Margin Research 56 Dec 08, 2022
Library - Recent and favorite documents

Thingy Thingy is used to quickly access recent and favorite documents. It's an XApp so it can work in any distribution and many desktop environments (

Linux Mint 23 Sep 11, 2022
it's a Django application to register and authenticate users using phone number.

django-phone-auth It's a Django application to register and authenticate users using phone number. CustomUser model created using AbstractUser class.

MsudD 4 Nov 29, 2022
CheckList-Api - Created with django rest framework and JWT(Json Web Tokens for Authentication)

CheckList Api created with django rest framework and JWT(Json Web Tokens for Aut

shantanu nimkar 1 Jan 24, 2022
An introduction of Markov decision process (MDP) and two algorithms that solve MDPs (value iteration, policy iteration) along with their Python implementations.

Markov Decision Process A Markov decision process (MDP), by definition, is a sequential decision problem for a fully observable, stochastic environmen

Yu Shen 31 Dec 30, 2022
Mock authentication API that acceccpts email and password and returns authentication result.

Mock authentication API that acceccpts email and password and returns authentication result.

Herman Shpryhau 1 Feb 11, 2022
Authentication, JWT, and permission scoping for Sanic

Sanic JWT Sanic JWT adds authentication protection and endpoints to Sanic. It is both easy to get up and running, and extensible for the developer. It

Adam Hopkins 229 Jan 05, 2023
A secure authentication module to validate user credentials in a Streamlit application.

Streamlit-Authenticator A secure authentication module to validate user credentials in a Streamlit application. Installation Streamlit-Authenticator i

M Khorasani 336 Dec 31, 2022
Out-of-the-box support register, sign in, email verification and password recovery workflows for websites based on Django and MongoDB

Using djmongoauth What is it? djmongoauth provides out-of-the-box support for basic user management and additional operations including user registrat

hao 3 Oct 21, 2021
Graphical Password Authentication System.

Graphical Password Authentication System. This is used to increase the protection/security of a website. Our system is divided into further 4 layers of protection. Each layer is totally different and

Hassan Shahzad 12 Dec 16, 2022
Authentication Module for django rest auth

django-rest-knox Authentication Module for django rest auth Knox provides easy to use authentication for Django REST Framework The aim is to allow for

James McMahon 878 Jan 04, 2023
RSA Cryptography Authentication Proof-of-Concept

RSA Cryptography Authentication Proof-of-Concept This project was a request by Structured Programming lectures in Computer Science college. It runs wi

Dennys Marcos 1 Jan 22, 2022
A Python inplementation for OAuth2

OAuth2-Python Discord Inplementation for OAuth2 login systems. This is a simple Python 'app' made to inplement in your programs that require (shitty)

Prifixy 0 Jan 06, 2022