Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks

Overview

SupCon-Framework

The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies:

  • Fixed bugs (incorrect ResNet implementations, which leads to a very small max batch size),
  • Offers a lot of additional functionality (first of all, rich validation).

To be more precise, in this implementations you will find:

  • Augmentations with albumentations
  • Hyperparameters are moved to .yml configs
  • t-SNE visualizations
  • 2-step validation (for features before and after the projection head) using metrics like AMI, NMI, mAP, precision_at_1, etc with PyTorch Metric Learning.
  • Exponential Moving Average for a more stable training, and Stochastic Moving Average for a better generalization and just overall performance.
  • Automatic Mixed Precision (torch version) training in order to be able to train with a bigger batch size (roughly by a factor of 2).
  • LabelSmoothing loss, and LRFinder for the second stage of the training (FC).
  • TensorBoard logs, checkpoints
  • Support of timm models, and pytorch-optimizer

Install

  1. Clone the repo:
git clone https://github.com/ivanpanshin/SupCon-Framework && cd SupCon-Framework/
  1. Create a clean virtual environment
python3 -m venv venv
source venv/bin/activate
  1. Install dependencies
python -m pip install --upgrade pip
pip install -r requirements.txt

Training

In order to execute Cifar10 training run:

python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage1.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage1.yml
python train.py --config_name configs/train/train_supcon_resnet18_cifar10_stage2.yml
python swa.py --config_name configs/train/swa_supcon_resnet18_cifar10_stage2.yml

In order to run LRFinder on the second stage of the training, run:

python learning_rate_finder.py --config_name configs/train/lr_finder_supcon_resnet18_cifar10_stage2.yml

The process of training Cifar100 is exactly the same, just change config names from cifar10 to cifar100.

After that you can check the results of the training either in logs or runs directory. For example, in order to check tensorboard logs for the first stage of Cifar10 training, run:

tensorboard --logdir runs/supcon_first_stage_cifar10

Visualizations

This repo is supplied with t-SNE visualizations so that you can check embeddings you get after the training. Check t-SNE.ipynb for details.

Those are t-SNE visualizations for Cifar10 for validation and train with SupCon (top), and validation and train with CE (bottom).

Those are t-SNE visualizations for Cifar100 for validation and train with SupCon (top), and validation and train with CE (bottom).

Results

Model Stage Dataset Accuracy
ResNet18 Frist CIFAR10 95.9
ResNet18 Second CIFAR10 94.9
ResNet18 Frist CIFAR100 79.0
ResNet18 Second CIFAR100 77.9

Note that even though the accuracy on the second stage is lower, it's not always the case. In my experience, the difference between stages is usually around 1 percent, including the difference that favors the second stage.

Training time for the whole pipeline (without any early stopping) on CIFAR10 or CIFAR100 is around 4 hours (single 2080Ti with AMP). However, with reasonable early stopping that value goes down to around 2.5-3 hours.

Custom datasets

It's fairly easy to adapt this pipeline to custom datasets. First, you need to check tools/datasets.py for that. Second, add a new class for your dataset. The only guideline here is to follow the same augmentation logic, that is

        if self.second_stage:
            image = self.transform(image=image)['image']
        else:
            image = self.transform(image)

Third, add your dataset to DATASETS dict still inside tools/datasets.py, and you're good to go.

FAQ

  • Q: What hyperparameters I should try to change?

    A: First of all, learning rate. Second of all, try to change the augmentation policy. SupCon is build around "cropping + color jittering" scheme, so you can try changing the cropping size or the intensity of jittering. Check tools.utils.build_transforms for that.

  • Q: What backbone and batch size should I use?

    A: This is quite simple. Take the biggest backbone you can, and after that take the highest batch size your GPU can offer. The reason for that: SupCon is more prone (than regular classification training with CE/LabelSmoothing/etc) to improving with stronger backbones. Moverover, it has a property of explicit hard positive and negative mining. It means that the higher the batch size - the more difficult and helpful samples you supply to your model.

  • Q: Do I need the second stage of the training?

    A: Not necessarily. You can do classification based only on embeddings. In order to do that compute embeddings for the train set, and at inference time do the following: take a sample, compute its embedding, take the closest one from the training, take its class. To make this fast and efficient, you something like faiss for similarity search. Note that this is actually how validation is done in this repo. Moveover, during training you will see a metric precision_at_1. This is actually just accuracy based solely on embeddings.

  • Q: Should I use AMP?

    A: If your GPU has tensor cores (like 2080Ti) - yes. If it doesn't (like 1080Ti) - check the speed with AMP and without. If the speed dropped slightly (or even increased by a bit) - use it, since SupCon works better with bigger batch sizes.

  • Q: How should I use EMA?

    A: You only need to choose the ema_decay_per_epoch parameter in the config. The heuristic is fairly simple. If your dataset is big, then something as small as 0.3 will do just fine. And as your dataset gets smaller, you can increase ema_decay_per_epoch. Thanks to bonlime for this idea. I advice you to check his great pytorch tools repo, it's a hidden gem.

  • Q: Is it better than training with Cross Entropy/Label Smoothing/etc?

    A: Unfortunately, in my experience, it's much easier to get better results with something like CE. It's more stable, faster to train, and simply produces better or the same results. For instance, in case on CIFAR10/100 it's trivial to train ResNet18 up tp 96/81 percent respectively. Of cource, I've seen cased where SupCon performs better, but it takes quite a bit of work to make it outperform CE.

  • Q: How long should I train with SupCon?

    A: The answer is tricky. On one hand, authors of the original paper claim that the longer you train with SupCon, the better it gets. However, I did not observe such a behavior in my tests. So the only recommendation I can give is the following: start with 100 epochs for easy datasets (like CIFAR10/100), and 1000 for more industrial ones. Then - monitor the training process. If the validaton metric (such as precision_at_1) doesn't impove for several dozens of epochs - you can stop the training. You might incorporate early stopping for this reason into the pipeline.

Owner
Ivan Panshin
Machine Learning Engineer: CV, NLP, tabular data. Kaggle (top 0.003% worldwide) and Open Source
Ivan Panshin
User Authentication in Flask using Flask-Login

User-Authentication-in-Flask Set up & Installation. 1 .Clone/Fork the git repo and create an environment Windows git clone https://github.com/Dev-Elie

ONDIEK ELIJAH OCHIENG 31 Dec 11, 2022
Creation & manipulation of PyPI tokens

PyPIToken: Manipulate PyPI API tokens PyPIToken is an open-source Python 3.6+ library for generating and manipulating PyPI tokens. PyPI tokens are ver

Joachim Jablon 8 Nov 01, 2022
Flask App With Login

Flask App With Login by FranciscoCharles Este projeto basico é o resultado do estudos de algumas funcionalidades do micro framework Flask do Python. O

Charles 3 Nov 14, 2021
Automatic login utility of free Wi-Fi captive portals

wicafe Automatic login utility of free Wi-Fi captive portals Disclaimer: read and grant the Terms of Service of Wi-Fi services before using it! This u

Takumi Sueda 8 May 31, 2022
Login qr line & qr image

login-qr-line-qr-image login qr line & qr image python3 & linux ubuntu api source: https://github.com/hert0t/BEAPI-BETA import httpx import qrcode fro

Alif Budiman 1 Dec 27, 2021
Simple Login - Login Extension for Flask - maintainer @cuducos

Login Extension for Flask The simplest way to add login to flask! Top Contributors Add yourself, send a PR! How it works First install it from PyPI. p

Flask Extensions 181 Jan 01, 2023
Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks

SupCon-Framework The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies

Ivan Panshin 132 Dec 14, 2022
examify-io is an online examination system that offers automatic grading , exam statistics , proctoring and programming tests , multiple user roles

examify-io is an online examination system that offers automatic grading , exam statistics , proctoring and programming tests , multiple user roles ( Examiner , Supervisor , Student )

Ameer Nasser 4 Oct 28, 2021
Brute force a JWT token. Script uses multithreading.

JWT BF Brute force a JWT token. Script uses multithreading. Tested on Kali Linux v2021.4 (64-bit). Made for educational purposes. I hope it will help!

Ivan Šincek 5 Dec 02, 2022
Crie seus tokens de autenticação com o AScrypt.

AScrypt tokens O AScrypt é uma forma de gerar tokens de autenticação para sua aplicação de forma rápida e segura. Todos os tokens que foram, mesmo que

Jaedson Silva 0 Jun 24, 2022
Auth-Starters - Different APIs using Django & Flask & FastAPI to see Authentication Service how its work

Auth-Starters Different APIs using Django & Flask & FastAPI to see Authentication Service how its work, and how to use it. This Repository based on my

Yasser Tahiri 7 Apr 22, 2022
A simple model based API maker written in Python and based on Django and Django REST Framework

Fast DRF Fast DRF is a small library for making API faster with Django and Django REST Framework. It's easy and configurable. Full Documentation here

Mohammad Ashraful Islam 18 Oct 05, 2022
Connect-4-AI - AI that plays Connect-4 using the minimax algorithm

Connect-4-AI Brief overview I coded up the Connect-4 (or four-in-a-row) game in

Favour Okeke 1 Feb 15, 2022
Django Admin Two-Factor Authentication, allows you to login django admin with google authenticator.

Django Admin Two-Factor Authentication Django Admin Two-Factor Authentication, allows you to login django admin with google authenticator. Why Django

Iman Karimi 9 Dec 07, 2022
Auth for use with FastAPI

FastAPI Auth Pluggable auth for use with FastAPI Supports OAuth2 Password Flow Uses JWT access and refresh tokens 100% mypy and test coverage Supports

David Montague 95 Jan 02, 2023
Authentication, JWT, and permission scoping for Sanic

Sanic JWT Sanic JWT adds authentication protection and endpoints to Sanic. It is both easy to get up and running, and extensible for the developer. It

Adam Hopkins 229 Jan 05, 2023
Automatizando a criação de DAGs usando Jinja e YAML

Automatizando a criação de DAGs no Airflow usando Jinja e YAML Arquitetura do Repo: Pastas por contexto de negócio (ex: Marketing, Analytics, HR, etc)

Arthur Henrique Dell' Antonia 5 Oct 19, 2021
Cack facebook tidak login

Cack facebook tidak login

Angga Kurniawan 5 Dec 12, 2021
JWT authentication for Pyramid

JWT authentication for Pyramid This package implements an authentication policy for Pyramid that using JSON Web Tokens. This standard (RFC 7519) is of

Wichert Akkerman 73 Dec 03, 2021
Django Rest Framework App wih JWT Authentication and other DRF stuff

Django Queries App with JWT authentication, Class Based Views, Serializers, Swagger UI, CI/CD and other cool DRF stuff API Documentaion /swagger - Swa

Rafael Salimov 4 Jan 29, 2022