Simple, hackable offline speech to text - using the VOSK-API.

Overview

Nerd Dictation

Offline Speech to Text for Desktop Linux. - See demo video.

This is a utility that provides simple access speech to text for using in Linux without being tied to a desktop environment.

Simple
This is a single file Python script with minimal dependencies.
Hackable
User configuration lets you manipulate text using Python string operations.
Zero Overhead
As this relies on manual activation there are no background processes.

Dictation is accessed manually with begin/end commands.

This uses the excellent vosk-api.

Usage

It is suggested to bind begin/end/cancel to shortcut keys.

nerd-dictation begin
nerd-dictation end

For details on how this can be used, see: nerd-dictation --help and nerd-dictation begin --help.

Features

Specific features include:

Numbers as Digits

Optional conversion from numbers to digits.

So Three million five hundred and sixty second becomes 3,000,562nd.

A series of numbers (such as reciting a phone number) is also supported.

So Two four six eight becomes 2,468.

Time Out
Optionally end speech to text early when no speech is detected for a given number of seconds. (without an explicit call to end which is otherwise required).
Output Type
Output can simulate keystroke events (default) or simply print to the standard output.
User Configuration Script
User configuration is just a Python script which can be used to manipulate text using Python's full feature set.

See nerd-dictation begin --help for details on how to access these options.

Dependencies

  • Python 3.
  • The VOSK-API.
  • parec command (for recording from pulse-audio).
  • xdotool command to simulate keyboard input.

Install

pip3 install vosk
git clone https://github.com/ideasman42/nerd-dictation.git
cd nerd-dictation
wget https://alphacephei.com/kaldi/models/vosk-model-small-en-us-0.15.zip
unzip vosk-model-small-en-us-0.15.zip
mv vosk-model-small-en-us-0.15 model

To test dictation:

./nerd-dictation begin --vosk-model-dir=./model &
# Start speaking.
./nerd-dictation end
  • Reminder that it's up to you to bind begin/end/cancel to actions you can easily access (typically key shortcuts).

  • To avoid having to pass the --vosk-model-dir argument, copy the model to the default path:

    mkdir -p ~/.config/nerd-dictation
    mv ./model ~/.config/nerd-dictation

Hint

Once this is working properly you may wish to download one of the larger language models for more accurate dictation. They are available here.

Configuration

This is an example of a trivial configuration file which simply makes the input text uppercase.

# ~/.config/nerd-dictation/nerd-dictation.py
def nerd_dictation_process(text):
    return text.upper()

A more comprehensive configuration is included in the examples/ directory.

Hints

  • The processing function can be used to implement your own actions using keywords of your choice. Simply return a blank string if you have implemented your own text handling.
  • Context sensitive actions can be implemented using command line utilities to access the active window.

Paths

Local Configuration
~/.config/nerd-dictation/nerd-dictation.py
Language Model

~/.config/nerd-dictation/model

Note that --vosk-model-dir=PATH can be used to override the default.

Command Line Arguments

Output of nerd-dictation --help

usage:

nerd-dictation [-h]  ...

This is a utility that activates text to speech in Linux. While it could use any system currently it uses the VOSK-API.

positional arguments:

begin: Begin dictation.
end: End dictation.
cancel: Cancel dictation.
optional arguments:
-h, --help show this help message and exit

Subcommand: begin

usage:

nerd-dictation begin [-h] [--cookie FILE_PATH] [--vosk-model-dir DIR]
                     [--pulse-device-name IDENTIFIER]
                     [--sample-rate HZ] [--defer-output] [--continuous]
                     [--timeout SECONDS] [--idle-time SECONDS]
                     [--delay-exit SECONDS]
                     [--punctuate-from-previous-timeout SECONDS]
                     [--full-sentence] [--numbers-as-digits]
                     [--numbers-use-separator] [--output OUTPUT_METHOD]
                     [- ...]

This creates the directory used to store internal data, so other commands such as sync can be performed.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).
--vosk-model-dir DIR
  Path to the VOSK model, see: https://alphacephei.com/vosk/models
--pulse-device-name IDENTIFIER
  The name of the pulse-audio device to use for recording. See the output of "pactl list sources" to find device names (using the identifier following "Name:").
--sample-rate HZ
  The sample rate to use for recording (in Hz). Defaults to 44100.
--defer-output

When enabled, output is deferred until exiting.

This prevents text being typed during speech (implied with --output=STDOUT)

--continuous Enable this option, when you intend to keep the dictation process enabled for extended periods of time. without this enabled, the entirety of this dictation session will be processed on every update. Only used when --defer-output is disabled.
--timeout SECONDS
  Time out recording when no speech is processed for the time in seconds. This can be used to avoid having to explicitly exit (zero disables).
--idle-time SECONDS
  Time to idle between processing audio from the recording. Setting to zero is the most responsive at the cost of high CPU usage. The default value is 0.1 (processing 10 times a second), which is quite responsive in practice (the maximum value is clamped to 0.5)
--delay-exit SECONDS
  The time to continue running after an exit request. this can be useful so "push to talk" setups can be released while you finish speaking (zero disables).
--punctuate-from-previous-timeout SECONDS
  The time-out in seconds for detecting the state of dictation from the previous recording, this can be useful so punctuation it is added before entering the dictation(zero disables).
--full-sentence
  Capitalize the first character. This is also used to add either a comma or a full stop when dictation is performed under the --punctuate-from-previous-timeout value.
--numbers-as-digits
  Convert numbers into digits instead of using whole words.
--numbers-use-separator
  Use a comma separators for numbers.
--output OUTPUT_METHOD
 

Method used to at put the result of speech to text.

  • SIMULATE_INPUT simulate keystrokes (default).
  • STDOUT print the result to the standard output. Be sure only to handle text from the standard output as the standard error may be used for reporting any problems that occur.
- ... End argument parsing.
This can be used for user defined arguments which configuration scripts may read from the sys.argv.

Subcommand: end

usage:

nerd-dictation end [-h] [--cookie FILE_PATH]

This ends dictation, causing the text to be typed in.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).

Subcommand: cancel

usage:

nerd-dictation cancel [-h] [--cookie FILE_PATH]

This cancels dictation.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).

Details

  • Typing in results will never press enter/return.
  • Pulse audio is used for recording.
  • Recording and speech to text a performed in parallel.

Examples

Store the result of speech to text as a variable in the shell:

SPEECH="$(nerd-dictation begin --timeout=1.0 --output=STDOUT)"

Example Configurations

These are example configurations you may use as a reference.

Other Software

  • Elograf - nerd-dictation GUI front-end that runs as a tray icon.

Limitations

  • Text from VOSK is all lower-case, while the user configuration can be used to set the case of common words like I this isn't very convenient (see the example configuration for details).

  • For some users the delay in start up may be noticeable on systems with slower hard disks especially when running for the 1st time (a cold start).

    This is a limitation with the choice not to use a service that runs in the background. Recording begins before any the speech-to-text components are loaded to mitigate this problem.

Further Work

  • And a general solution to capitalize words (proper nouns for example).
  • Wayland support (this should be quite simple to support and mainly relies on a replacement for xdotool).
  • Add a setup.py for easy installation on uses systems.
  • Possibly other speech to text engines (only if they provide some significant benefits).
  • Possibly support Windows & macOS.
Owner
Campbell Barton
Campbell Barton
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Mkdocs + material + cool stuff

Modern-Python-Doc-Example mkdocs + material + cool stuff Doc is live here Features out of the box amazing good looking website thanks to mkdocs.org an

Francesco Saverio Zuppichini 61 Oct 26, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022