Simple, hackable offline speech to text - using the VOSK-API.

Overview

Nerd Dictation

Offline Speech to Text for Desktop Linux. - See demo video.

This is a utility that provides simple access speech to text for using in Linux without being tied to a desktop environment.

Simple
This is a single file Python script with minimal dependencies.
Hackable
User configuration lets you manipulate text using Python string operations.
Zero Overhead
As this relies on manual activation there are no background processes.

Dictation is accessed manually with begin/end commands.

This uses the excellent vosk-api.

Usage

It is suggested to bind begin/end/cancel to shortcut keys.

nerd-dictation begin
nerd-dictation end

For details on how this can be used, see: nerd-dictation --help and nerd-dictation begin --help.

Features

Specific features include:

Numbers as Digits

Optional conversion from numbers to digits.

So Three million five hundred and sixty second becomes 3,000,562nd.

A series of numbers (such as reciting a phone number) is also supported.

So Two four six eight becomes 2,468.

Time Out
Optionally end speech to text early when no speech is detected for a given number of seconds. (without an explicit call to end which is otherwise required).
Output Type
Output can simulate keystroke events (default) or simply print to the standard output.
User Configuration Script
User configuration is just a Python script which can be used to manipulate text using Python's full feature set.

See nerd-dictation begin --help for details on how to access these options.

Dependencies

  • Python 3.
  • The VOSK-API.
  • parec command (for recording from pulse-audio).
  • xdotool command to simulate keyboard input.

Install

pip3 install vosk
git clone https://github.com/ideasman42/nerd-dictation.git
cd nerd-dictation
wget https://alphacephei.com/kaldi/models/vosk-model-small-en-us-0.15.zip
unzip vosk-model-small-en-us-0.15.zip
mv vosk-model-small-en-us-0.15 model

To test dictation:

./nerd-dictation begin --vosk-model-dir=./model &
# Start speaking.
./nerd-dictation end
  • Reminder that it's up to you to bind begin/end/cancel to actions you can easily access (typically key shortcuts).

  • To avoid having to pass the --vosk-model-dir argument, copy the model to the default path:

    mkdir -p ~/.config/nerd-dictation
    mv ./model ~/.config/nerd-dictation

Hint

Once this is working properly you may wish to download one of the larger language models for more accurate dictation. They are available here.

Configuration

This is an example of a trivial configuration file which simply makes the input text uppercase.

# ~/.config/nerd-dictation/nerd-dictation.py
def nerd_dictation_process(text):
    return text.upper()

A more comprehensive configuration is included in the examples/ directory.

Hints

  • The processing function can be used to implement your own actions using keywords of your choice. Simply return a blank string if you have implemented your own text handling.
  • Context sensitive actions can be implemented using command line utilities to access the active window.

Paths

Local Configuration
~/.config/nerd-dictation/nerd-dictation.py
Language Model

~/.config/nerd-dictation/model

Note that --vosk-model-dir=PATH can be used to override the default.

Command Line Arguments

Output of nerd-dictation --help

usage:

nerd-dictation [-h]  ...

This is a utility that activates text to speech in Linux. While it could use any system currently it uses the VOSK-API.

positional arguments:

begin: Begin dictation.
end: End dictation.
cancel: Cancel dictation.
optional arguments:
-h, --help show this help message and exit

Subcommand: begin

usage:

nerd-dictation begin [-h] [--cookie FILE_PATH] [--vosk-model-dir DIR]
                     [--pulse-device-name IDENTIFIER]
                     [--sample-rate HZ] [--defer-output] [--continuous]
                     [--timeout SECONDS] [--idle-time SECONDS]
                     [--delay-exit SECONDS]
                     [--punctuate-from-previous-timeout SECONDS]
                     [--full-sentence] [--numbers-as-digits]
                     [--numbers-use-separator] [--output OUTPUT_METHOD]
                     [- ...]

This creates the directory used to store internal data, so other commands such as sync can be performed.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).
--vosk-model-dir DIR
  Path to the VOSK model, see: https://alphacephei.com/vosk/models
--pulse-device-name IDENTIFIER
  The name of the pulse-audio device to use for recording. See the output of "pactl list sources" to find device names (using the identifier following "Name:").
--sample-rate HZ
  The sample rate to use for recording (in Hz). Defaults to 44100.
--defer-output

When enabled, output is deferred until exiting.

This prevents text being typed during speech (implied with --output=STDOUT)

--continuous Enable this option, when you intend to keep the dictation process enabled for extended periods of time. without this enabled, the entirety of this dictation session will be processed on every update. Only used when --defer-output is disabled.
--timeout SECONDS
  Time out recording when no speech is processed for the time in seconds. This can be used to avoid having to explicitly exit (zero disables).
--idle-time SECONDS
  Time to idle between processing audio from the recording. Setting to zero is the most responsive at the cost of high CPU usage. The default value is 0.1 (processing 10 times a second), which is quite responsive in practice (the maximum value is clamped to 0.5)
--delay-exit SECONDS
  The time to continue running after an exit request. this can be useful so "push to talk" setups can be released while you finish speaking (zero disables).
--punctuate-from-previous-timeout SECONDS
  The time-out in seconds for detecting the state of dictation from the previous recording, this can be useful so punctuation it is added before entering the dictation(zero disables).
--full-sentence
  Capitalize the first character. This is also used to add either a comma or a full stop when dictation is performed under the --punctuate-from-previous-timeout value.
--numbers-as-digits
  Convert numbers into digits instead of using whole words.
--numbers-use-separator
  Use a comma separators for numbers.
--output OUTPUT_METHOD
 

Method used to at put the result of speech to text.

  • SIMULATE_INPUT simulate keystrokes (default).
  • STDOUT print the result to the standard output. Be sure only to handle text from the standard output as the standard error may be used for reporting any problems that occur.
- ... End argument parsing.
This can be used for user defined arguments which configuration scripts may read from the sys.argv.

Subcommand: end

usage:

nerd-dictation end [-h] [--cookie FILE_PATH]

This ends dictation, causing the text to be typed in.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).

Subcommand: cancel

usage:

nerd-dictation cancel [-h] [--cookie FILE_PATH]

This cancels dictation.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).

Details

  • Typing in results will never press enter/return.
  • Pulse audio is used for recording.
  • Recording and speech to text a performed in parallel.

Examples

Store the result of speech to text as a variable in the shell:

SPEECH="$(nerd-dictation begin --timeout=1.0 --output=STDOUT)"

Example Configurations

These are example configurations you may use as a reference.

Other Software

  • Elograf - nerd-dictation GUI front-end that runs as a tray icon.

Limitations

  • Text from VOSK is all lower-case, while the user configuration can be used to set the case of common words like I this isn't very convenient (see the example configuration for details).

  • For some users the delay in start up may be noticeable on systems with slower hard disks especially when running for the 1st time (a cold start).

    This is a limitation with the choice not to use a service that runs in the background. Recording begins before any the speech-to-text components are loaded to mitigate this problem.

Further Work

  • And a general solution to capitalize words (proper nouns for example).
  • Wayland support (this should be quite simple to support and mainly relies on a replacement for xdotool).
  • Add a setup.py for easy installation on uses systems.
  • Possibly other speech to text engines (only if they provide some significant benefits).
  • Possibly support Windows & macOS.
Owner
Campbell Barton
Campbell Barton
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
🤗đŸ–ŧī¸ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 đŸ–ŧī¸ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)

Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty

Clova AI Research 436 Dec 27, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | įŽ€äŊ“中文 | įšéĢ”ä¸­æ–‡ State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023