Python document object mapper (load python object from JSON and vice-versa)

Overview

lupin is a Python JSON object mapper

Build Status

lupin is meant to help in serializing python objects to JSON and unserializing JSON data to python objects.

Installation

pip install lupin

Usage

lupin uses schemas to create a representation of a python object.

A schema is composed of fields which represents the way to load and dump an attribute of an object.

Define schemas

from datetime import datetime
from lupin import Mapper, Schema, fields as f


# 1) Define your models
class Thief(object):
    def __init__(self, name, stolen_items):
        self.name = name
        self.stolen_items = stolen_items


class Painting(object):
    def __init__(self, name, author):
        self.name = name
        self.author = author


class Artist(object):
    def __init__(self, name, birth_date):
        self.name = name
        self.birth_date = birth_date


# 2) Create schemas
artist_schema = Schema({
    "name": f.String(),
    "birthDate": f.DateTime(binding="birth_date", format="%Y-%m-%d")
}, name="artist")

painting_schema = Schema({
    "name": f.String(),
    "author": f.Object(artist_schema)
}, name="painting")

thief_schema = Schema({
    "name": f.String(),
    "stolenItems": f.List(painting_schema, binding="stolen_items")
}, name="thief")

# 3) Create a mapper and register a schema for each of your models you want to map to JSON objects
mapper = Mapper()

mapper.register(Artist, artist_schema)
mapper.register(Painting, painting_schema)
mapper.register(Thief, thief_schema)


# 4) Create some sample data
leonardo = Artist(name="Leonardo da Vinci", birth_date=datetime(1452, 4, 15))
mona_lisa = Painting(name="Mona Lisa", author=leonardo)
arsene = Thief(name="Arsène Lupin", stolen_items=[mona_lisa])

Dump objects

# use mapper to dump python objects
assert mapper.dump(leonardo) == {
    "name": "Leonardo da Vinci",
    "birthDate": "1452-04-15"
}

assert mapper.dump(mona_lisa) == {
    "name": "Mona Lisa",
    "author": {
        "name": "Leonardo da Vinci",
        "birthDate": "1452-04-15"
    }
}

assert mapper.dump(arsene) == {
    "name": "Arsène Lupin",
    "stolenItems": [
        {
            "name": "Mona Lisa",
            "author": {
                "name": "Leonardo da Vinci",
                "birthDate": "1452-04-15"
            }
        }
    ]
}

Load objects

# use mapper to load JSON data
data = {
    "name": "Mona Lisa",
    "author": {
        "name": "Leonardo da Vinci",
        "birthDate": "1452-04-15"
    }
}
painting = mapper.load(data, "painting")  # "painting" is the name of the schame you want to use
artist = painting.author

assert isinstance(painting, Painting)
assert painting.name == "Mona Lisa"

assert isinstance(artist, Artist)
assert artist.name == "Leonardo da Vinci"
assert artist.birth_date == datetime(1452, 4, 15)

Polymorphic lists

Sometimes a list can contain multiple type of objects. In such cases you will have to use a PolymorphicList, you will also need to add a key in the items schema to store the type of the object (you can use a Constant field).

Say that our thief has level up and has stolen a diamond.

class Diamond(object):
    def __init__(self, carat):
        self.carat = carat


mapper = Mapper()

# Register a schema for diamonds
diamond_schema = Schema({
    "carat": f.Field(),
    "type": f.Constant("diamond")  # this will be used to know which schema to used while loading JSON
}, name="diamond")
mapper.register(Diamond, diamond_schema)

# Change our painting schema in order to include a `type` field
painting_schema = Schema({
    "name": f.String(),
    "type": f.Constant("painting"),
    "author": f.Object(artist_schema)
}, name="painting")
mapper.register(Painting, painting_schema)

# Use `PolymorphicList` for `stolen_items`
thief_schema = Schema({
    "name": f.String(),
    "stolenItems": f.PolymorphicList(on="type",  # JSON key to lookup for the polymorphic type
                                     binding="stolen_items",
                                     schemas={
                                         "painting": painting_schema,  # if `type == "painting"` then use painting_schema
                                         "diamond": diamond_schema  # if `type == "diamond"` then use diamond_schema
                                     })
}, name="thief")
mapper.register(Thief, thief_schema)


diamond = Diamond(carat=20)
arsene.stolen_items.append(diamond)

# Dump object
data = mapper.dump(arsene)
assert data == {
    "name": "Arsène Lupin",
    "stolenItems": [
        {
            "name": "Mona Lisa",
            "type": "painting",
            "author": {
                "name": "Leonardo da Vinci",
                "birthDate": "1452-04-15"
            }
        },
        {
            "carat": 20,
            "type": "diamond"
        }
    ]
}

# Load data
thief = mapper.load(data, "thief")
assert isinstance(thief.stolen_items[0], Painting)
assert isinstance(thief.stolen_items[1], Diamond)

Validation

Lupin provides a set of builtin validators, you can find them in the lupin/validators folder.

While creating your schemas you can assign validators to the fields. Before loading a document lupin will validate its format. If one field is invalid, an InvalidDocument is raised with all the error detected in the data.

Example :

from lupin import Mapper, Schema, fields as f, validators as v
from lupin.errors import InvalidDocument, InvalidLength
from models import Artist

mapper = Mapper()

artist_schema = Schema({
    "name": f.String(validators=v.Length(max=10)),
}, name="artist")
mapper.register(Artist, artist_schema)

data = {
    "name": "Leonardo da Vinci"
}

try:
    mapper.load(data, artist_schema, allow_partial=True)
except InvalidDocument as errors:
    error = errors[0]
    assert isinstance(error, InvalidLength)
    assert error.path == ["name"]

Current validators are :

  • DateTimeFormat (validate that value is a valid datetime format)
  • Equal (validate that value is equal to a predefined one)
  • In (validate that a value is contained in a set of value)
  • Length (validate the length of a value)
  • Match (validate the format of a value with a regex)
  • Type (validate the type of a value, this validator is already included in all fields to match the field type)
  • URL (validate an URL string format)
  • IsNone (validate that value is None)
  • Between (validate that value belongs to a range)

Combination

You can build validators combinations using the & and | operator.

Example :

from lupin import validators as v
from lupin.errors import ValidationError

validators = v.Equal("Lupin") | v.Equal("Andrésy")
# validators passes only if value is "Lupin" or "Andrésy"

validators("Lupin", [])

try:
    validators("Holmes", [])
except ValidationError:
    print("Validation error")
Owner
Aurélien Amilin
Aurélien Amilin
An interview engine for businesses, interview those who are actually qualified and are worth your time!

easyInterview V0.8B An interview engine for businesses, interview those who are actually qualified and are worth your time! Quick Overview You/the com

Vatsal Shukla 1 Nov 19, 2021
An open source utility for creating publication quality LaTex figures generated from OpenFOAM data files.

foamTEX An open source utility for creating publication quality LaTex figures generated from OpenFOAM data files. Explore the docs » Report Bug · Requ

1 Dec 19, 2021
Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

A 186 Dec 30, 2022
DataRisk Detection Learning Resources

DataRisk Detection Learning Resources Data security: Based on the "data-centric security system" position, it generally refers to the entire security

Liao Wenzhe 59 Dec 05, 2022
The blazing-fast Discord bot.

Wavy Wavy is an open-source multipurpose Discord bot built with pycord. Wavy is still in development, so use it at your own risk. Tools and services u

Wavy 7 Dec 27, 2022
A collection and example code of every topic you need to know about in the basics of Python.

The Python Beginners Guide: Master The Python Basics Tonight This guide is a collection of every topic you need to know about in the basics of Python.

Ahmed Baari 1 Dec 19, 2021
Python Programming (Practical) (1-25) Download 👇🏼

BCA-603 : Python Programming (Practical) (1-25) Download zip 🙂 🌟 How to run programs : Clone or download this repo to your computer. Unzip (If you d

Milan Jadav 2 Jun 02, 2022
Visualizacao-dados-dell - Repositório com as atividades desenvolvidas no curso de Visualização de Dados

📚 Descrição Neste curso da Dell trabalhamos com a visualização de dados. 🖥️ Aulas 1.1 - Explorando conjuntos de dados 1.2 - Fundamentos de visualiza

Claudia dos Anjos 1 Dec 28, 2021
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Automatic links from code examples to reference documentation

sphinx-codeautolink Automatic links from Python code examples to reference documentation at the flick of a switch! sphinx-codeautolink analyses the co

Felix Hildén 41 Dec 17, 2022
Python 3 wrapper for the Vultr API v2.0

Vultr Python Python wrapper for the Vultr API. https://www.vultr.com https://www.vultr.com/api This is currently a WIP and not complete, but has some

CSSNR 6 Apr 28, 2022
A clean customizable documentation theme for Sphinx

A clean customizable documentation theme for Sphinx

Pradyun Gedam 1.5k Jan 06, 2023
Hjson for Python

hjson-py Hjson, a user interface for JSON Hjson works with Python 2.5+ and Python 3.3+ The Python implementation of Hjson is based on simplejson. For

Hjson 185 Dec 13, 2022
A collection of online resources to help you on your Tech journey.

Everything Tech Resources & Projects About The Project Coming from an engineering background and looking to up skill yourself on a new field can be di

Mohamed A 396 Dec 31, 2022
Gaphor is the simple modeling tool

Gaphor Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implemen

Gaphor 1.3k Jan 03, 2023
Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane.

Xanadu Quantum Codebook The Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane. This reposit

Xanadu 43 Dec 09, 2022
Loudchecker - Python script to check files for earrape

loudchecker python script to check files for earrape automatically installs depe

1 Jan 22, 2022
Contains the assignments from the course Building a Modern Computer from First Principles: From Nand to Tetris.

Contains the assignments from the course Building a Modern Computer from First Principles: From Nand to Tetris.

Matheus Rodrigues 1 Jan 20, 2022
DataAnalysis: Some data analysis projects in charles_pikachu

DataAnalysis DataAnalysis: Some data analysis projects in charles_pikachu You can star this repository to keep track of the project if it's helpful fo

9 Nov 04, 2022
DocumentPy is a Python application that runs in a command-line interface environment, made for creating HTML documents.

DocumentPy DocumentPy is a Python application that runs in a command-line interface environment, made for creating HTML documents. Usage DocumentPy, a

Lotus 0 Jul 15, 2021