Python document object mapper (load python object from JSON and vice-versa)

Overview

lupin is a Python JSON object mapper

Build Status

lupin is meant to help in serializing python objects to JSON and unserializing JSON data to python objects.

Installation

pip install lupin

Usage

lupin uses schemas to create a representation of a python object.

A schema is composed of fields which represents the way to load and dump an attribute of an object.

Define schemas

from datetime import datetime
from lupin import Mapper, Schema, fields as f


# 1) Define your models
class Thief(object):
    def __init__(self, name, stolen_items):
        self.name = name
        self.stolen_items = stolen_items


class Painting(object):
    def __init__(self, name, author):
        self.name = name
        self.author = author


class Artist(object):
    def __init__(self, name, birth_date):
        self.name = name
        self.birth_date = birth_date


# 2) Create schemas
artist_schema = Schema({
    "name": f.String(),
    "birthDate": f.DateTime(binding="birth_date", format="%Y-%m-%d")
}, name="artist")

painting_schema = Schema({
    "name": f.String(),
    "author": f.Object(artist_schema)
}, name="painting")

thief_schema = Schema({
    "name": f.String(),
    "stolenItems": f.List(painting_schema, binding="stolen_items")
}, name="thief")

# 3) Create a mapper and register a schema for each of your models you want to map to JSON objects
mapper = Mapper()

mapper.register(Artist, artist_schema)
mapper.register(Painting, painting_schema)
mapper.register(Thief, thief_schema)


# 4) Create some sample data
leonardo = Artist(name="Leonardo da Vinci", birth_date=datetime(1452, 4, 15))
mona_lisa = Painting(name="Mona Lisa", author=leonardo)
arsene = Thief(name="Arsène Lupin", stolen_items=[mona_lisa])

Dump objects

# use mapper to dump python objects
assert mapper.dump(leonardo) == {
    "name": "Leonardo da Vinci",
    "birthDate": "1452-04-15"
}

assert mapper.dump(mona_lisa) == {
    "name": "Mona Lisa",
    "author": {
        "name": "Leonardo da Vinci",
        "birthDate": "1452-04-15"
    }
}

assert mapper.dump(arsene) == {
    "name": "Arsène Lupin",
    "stolenItems": [
        {
            "name": "Mona Lisa",
            "author": {
                "name": "Leonardo da Vinci",
                "birthDate": "1452-04-15"
            }
        }
    ]
}

Load objects

# use mapper to load JSON data
data = {
    "name": "Mona Lisa",
    "author": {
        "name": "Leonardo da Vinci",
        "birthDate": "1452-04-15"
    }
}
painting = mapper.load(data, "painting")  # "painting" is the name of the schame you want to use
artist = painting.author

assert isinstance(painting, Painting)
assert painting.name == "Mona Lisa"

assert isinstance(artist, Artist)
assert artist.name == "Leonardo da Vinci"
assert artist.birth_date == datetime(1452, 4, 15)

Polymorphic lists

Sometimes a list can contain multiple type of objects. In such cases you will have to use a PolymorphicList, you will also need to add a key in the items schema to store the type of the object (you can use a Constant field).

Say that our thief has level up and has stolen a diamond.

class Diamond(object):
    def __init__(self, carat):
        self.carat = carat


mapper = Mapper()

# Register a schema for diamonds
diamond_schema = Schema({
    "carat": f.Field(),
    "type": f.Constant("diamond")  # this will be used to know which schema to used while loading JSON
}, name="diamond")
mapper.register(Diamond, diamond_schema)

# Change our painting schema in order to include a `type` field
painting_schema = Schema({
    "name": f.String(),
    "type": f.Constant("painting"),
    "author": f.Object(artist_schema)
}, name="painting")
mapper.register(Painting, painting_schema)

# Use `PolymorphicList` for `stolen_items`
thief_schema = Schema({
    "name": f.String(),
    "stolenItems": f.PolymorphicList(on="type",  # JSON key to lookup for the polymorphic type
                                     binding="stolen_items",
                                     schemas={
                                         "painting": painting_schema,  # if `type == "painting"` then use painting_schema
                                         "diamond": diamond_schema  # if `type == "diamond"` then use diamond_schema
                                     })
}, name="thief")
mapper.register(Thief, thief_schema)


diamond = Diamond(carat=20)
arsene.stolen_items.append(diamond)

# Dump object
data = mapper.dump(arsene)
assert data == {
    "name": "Arsène Lupin",
    "stolenItems": [
        {
            "name": "Mona Lisa",
            "type": "painting",
            "author": {
                "name": "Leonardo da Vinci",
                "birthDate": "1452-04-15"
            }
        },
        {
            "carat": 20,
            "type": "diamond"
        }
    ]
}

# Load data
thief = mapper.load(data, "thief")
assert isinstance(thief.stolen_items[0], Painting)
assert isinstance(thief.stolen_items[1], Diamond)

Validation

Lupin provides a set of builtin validators, you can find them in the lupin/validators folder.

While creating your schemas you can assign validators to the fields. Before loading a document lupin will validate its format. If one field is invalid, an InvalidDocument is raised with all the error detected in the data.

Example :

from lupin import Mapper, Schema, fields as f, validators as v
from lupin.errors import InvalidDocument, InvalidLength
from models import Artist

mapper = Mapper()

artist_schema = Schema({
    "name": f.String(validators=v.Length(max=10)),
}, name="artist")
mapper.register(Artist, artist_schema)

data = {
    "name": "Leonardo da Vinci"
}

try:
    mapper.load(data, artist_schema, allow_partial=True)
except InvalidDocument as errors:
    error = errors[0]
    assert isinstance(error, InvalidLength)
    assert error.path == ["name"]

Current validators are :

  • DateTimeFormat (validate that value is a valid datetime format)
  • Equal (validate that value is equal to a predefined one)
  • In (validate that a value is contained in a set of value)
  • Length (validate the length of a value)
  • Match (validate the format of a value with a regex)
  • Type (validate the type of a value, this validator is already included in all fields to match the field type)
  • URL (validate an URL string format)
  • IsNone (validate that value is None)
  • Between (validate that value belongs to a range)

Combination

You can build validators combinations using the & and | operator.

Example :

from lupin import validators as v
from lupin.errors import ValidationError

validators = v.Equal("Lupin") | v.Equal("Andrésy")
# validators passes only if value is "Lupin" or "Andrésy"

validators("Lupin", [])

try:
    validators("Holmes", [])
except ValidationError:
    print("Validation error")
Owner
Aurélien Amilin
Aurélien Amilin
Comprehensive Python Cheatsheet

Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Contents 1. Collections: List, Dictionary, Set, Tuple

Jefferson 1 Jan 23, 2022
Proyecto - Desgaste y rendimiento de empleados de IBM HR Analytics

Acceder al código desde Google Colab para poder ver de manera adecuada todas las visualizaciones y poder interactuar con ellas. Links de acceso: Noteb

1 Jan 31, 2022
BakTst_Org is a backtesting system for quantitative transactions.

BakTst_Org 中文reademe:传送门 Introduction: BakTst_Org is a prototype of the backtesting system used for BTC quantitative trading. This readme is mainly di

18 May 08, 2021
Literate-style documentation generator.

888888b. 888 Y88b 888 888 888 d88P 888 888 .d8888b .d8888b .d88b. 8888888P" 888 888 d88P" d88P" d88""88b 888 888 888

Pycco 808 Dec 27, 2022
Elliptic curve cryptography (ed25519) beginner tutorials in Python 3

ed25519_tutorials Elliptic curve cryptography (ed25519) beginner tutorials in Python 3 Instructions Just download the repo and read the tutorial files

6 Dec 27, 2022
This repository outlines deploying a local Kubeflow v1.3 instance on microk8s and deploying a simple MNIST classifier using KFServing.

Zero to Inference with Kubeflow Getting Started This repository houses all of the tools, utilities, and example pipeline implementations for exploring

Ed Henry 3 May 18, 2022
A swagger tool for tornado, using python to write api doc!

SwaggerDoc About A swagger tool for tornado, using python to write api doc! Installation pip install swagger-doc Quick Start code import tornado.ioloo

aaashuai 1 Jan 10, 2022
Generates, filters, parses, and cleans data regarding the financial disclosures of judges in the American Judicial System

This repository contains code that gets data regarding financial disclosures from the Court Listener API main.py: contains driver code that interacts

Ali Rastegar 2 Aug 06, 2022
Plugins for MkDocs.

Plugins for MkDocs and Python Markdown pip install neoteroi-mkdocs This package includes the following plugins and extensions: Name Description Type m

35 Dec 23, 2022
Python document object mapper (load python object from JSON and vice-versa)

lupin is a Python JSON object mapper lupin is meant to help in serializing python objects to JSON and unserializing JSON data to python objects. Insta

Aurélien Amilin 24 Nov 09, 2022
Python For Finance Cookbook - Code Repository

Python For Finance Cookbook - Code Repository

Packt 544 Dec 25, 2022
Docov - Light-weight, recursive docstring coverage analysis for python modules

docov Light-weight, recursive docstring coverage analysis for python modules. Ov

Richard D. Paul 3 Feb 04, 2022
This contains timezone mapping information for when preprocessed from the geonames data

when-data This contains timezone mapping information for when preprocessed from the geonames data. It exists in a separate repository so that one does

Armin Ronacher 2 Dec 07, 2021
Yu-Gi-Oh! Master Duel translation script

Yu-Gi-Oh! Master Duel translation script

715 Jan 08, 2023
Data-science-on-gcp - Source code accompanying book: Data Science on the Google Cloud Platform, Valliappa Lakshmanan, O'Reilly 2017

data-science-on-gcp Source code accompanying book: Data Science on the Google Cloud Platform, 2nd Edition Valliappa Lakshmanan O'Reilly, Jan 2022 Bran

Google Cloud Platform 1.2k Dec 28, 2022
Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

A 186 Dec 30, 2022
MkDocs Plugin allowing your visitors to *File > Print > Save as PDF* the entire site.

mkdocs-print-site-plugin MkDocs plugin that adds a page to your site combining all pages, allowing your site visitors to File Print Save as PDF th

Tim Vink 67 Jan 04, 2023
Type hints support for the Sphinx autodoc extension

sphinx-autodoc-typehints This extension allows you to use Python 3 annotations for documenting acceptable argument types and return value types of fun

Alex Grönholm 462 Dec 29, 2022
NetBox plugin for BGP related objects documentation

Netbox BGP Plugin Netbox plugin for BGP related objects documentation. Compatibility This plugin in compatible with NetBox 2.10 and later. Installatio

Nikolay Yuzefovich 133 Dec 27, 2022
Generating a report CSV and send it to an email - Python / Django Rest Framework

Generating a report in CSV format and sending it to a email How to start project. Create a folder in your machine Create a virtual environment python3

alexandre Lopes 1 Jan 17, 2022