Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

Overview

Cover of the deep learning book by Goodfellow, Bengio and Courville

The Deep Learning Book - Goodfellow, I., Bengio, Y., and Courville, A. (2016)

This content is part of a series following the chapter 2 on linear algebra from the Deep Learning Book by Goodfellow, I., Bengio, Y., and Courville, A. (2016). It aims to provide intuitions/drawings/python code on mathematical theories and is constructed as my understanding of these concepts.

Boost your data science skills. Learn linear algebra.

I'd like to introduce a series of blog posts and their corresponding Python Notebooks gathering notes on the Deep Learning Book from Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). The aim of these notebooks is to help beginners/advanced beginners to grasp linear algebra concepts underlying deep learning and machine learning. Acquiring these skills can boost your ability to understand and apply various data science algorithms. In my opinion, it is one of the bedrock of machine learning, deep learning and data science.

These notes cover the chapter 2 on Linear Algebra. I liked this chapter because it gives a sense of what is most used in the domain of machine learning and deep learning. It is thus a great syllabus for anyone who wants to dive in deep learning and acquire the concepts of linear algebra useful to better understand deep learning algorithms.

You can find all the articles here.

Getting started with linear algebra

The goal of this series is to provide content for beginners who want to understand enough linear algebra to be confortable with machine learning and deep learning. However, I think that the chapter on linear algebra from the Deep Learning book is a bit tough for beginners. So I decided to produce code, examples and drawings on each part of this chapter in order to add steps that may not be obvious for beginners. I also think that you can convey as much information and knowledge through examples as through general definitions. The illustrations are a way to see the big picture of an idea. Finally, I think that coding is a great tool to experiment with these abstract mathematical notions. Along with pen and paper, it adds a layer of what you can try to push your understanding through new horizons.

Graphical representation is also very helpful to understand linear algebra. I tried to bind the concepts with plots (and code to produce it). The type of representation I liked most by doing this series is the fact that you can see any matrix as linear transformation of the space. In several chapters we will extend this idea and see how it can be useful to understand eigendecomposition, Singular Value Decomposition (SVD) or the Principal Components Analysis (PCA).

The use of Python/Numpy

In addition, I noticed that creating and reading examples is really helpful to understand the theory. It is why I built Python notebooks. The goal is two folds:

  1. To provide a starting point to use Python/Numpy to apply linear algebra concepts. And since the final goal is to use linear algebra concepts for data science, it seems natural to continuously go between theory and code. All you will need is a working Python installation with major mathematical librairies like Numpy/Scipy/Matplotlib.

  2. Give a more concrete vision of the underlying concepts. I found hugely useful to play and experiment with these notebooks in order to build my understanding of somewhat complicated theoretical concepts or notations. I hope that reading them will be as useful.

Syllabus

The syllabus follows exactly the Deep Learning Book so you can find more details if you can't understand one specific point while you are reading it. Here is a short description of the content:

  1. Scalars, Vectors, Matrices and Tensors

    An example of a scalar, a vector, a matrix and a tensor

    Difference between a scalar, a vector, a matrix and a tensor

    Light introduction to vectors, matrices, transpose and basic operations (addition of vectors of matrices). Introduces also Numpy functions and finally a word on broadcasting.

  2. Multiplying Matrices and Vectors

    An example of how to calculate the dot product

    The dot product explained

    This chapter is mainly on the dot product (vector and/or matrix multiplication). We will also see some of its properties. Then, we will see how to synthesize a system of linear equations using matrix notation. This is a major process for the following chapters.

  3. Identity and Inverse Matrices

    Example of an identity matrix

    An identity matrix

    We will see two important matrices: the identity matrix and the inverse matrix. We will see why they are important in linear algebra and how to use them with Numpy. Finally, we will see an example on how to solve a system of linear equations with the inverse matrix.

  4. Linear Dependence and Span

    Examples of systems of equations with 0, 1 and an infinite number of solutions

    A system of equations has no solution, 1 solution or an infinite number of solutions

    In this chapter we will continue to study systems of linear equations. We will see that such systems can't have more than one solution and less than an infinite number of solutions. We will see the intuition, the graphical representation and the proof behind this statement. Then we will go back to the matrix form of the system and consider what Gilbert Strang calls the row figure (we are looking at the rows, that is to say multiple equations) and the column figure (looking at the columns, that is to say the linear combination of the coefficients). We will also see what is linear combination. Finally, we will see examples of overdetermined and underdetermined systems of equations.

  5. Norms

    Representation of the squared L2 norm in 3 dimensions

    Shape of a squared L2 norm in 3 dimensions

    The norm of a vector is a function that takes a vector in input and outputs a positive value. It can be thought of as the length of the vector. It is for example used to evaluate the distance between the prediction of a model and the actual value. We will see different kinds of norms ($L^0$, $L^1$, $L^2$...) with examples.

  6. Special Kinds of Matrices and Vectors

    Example of a diagonal matrix and of a symmetric matrix

    A diagonal (left) and a symmetric matrix (right)

    We have seen in 2.3 some special matrices that are very interesting. We will see other types of vectors and matrices in this chapter. It is not a big chapter but it is important to understand the next ones.

  7. Eigendecomposition

    output_59_0

    We will see some major concepts of linear algebra in this chapter. We will start by getting some ideas on eigenvectors and eigenvalues. We will see that a matrix can be seen as a linear transformation and that applying a matrix on its eigenvectors gives new vectors with same direction. Then we will see how to express quadratic equations in a matrix form. We will see that the eigendecomposition of the matrix corresponding to the quadratic equation can be used to find its minimum and maximum. As a bonus, we will also see how to visualize linear transformation in Python!

  8. Singular Value Decomposition

    output_35_7

    We will see another way to decompose matrices: the Singular Value Decomposition or SVD. Since the beginning of this series I emphasized the fact that you can see matrices as linear transformation in space. With the SVD, you decompose a matrix in three other matrices. We will see that we look at these new matrices as sub-transformation of the space. Instead of doing the transformation in one movement, we decompose it in three movements. As a bonus, we will apply the SVD to image processing. We will see the effect of SVD on an example image of Lucy the goose. So keep on reading!

  9. The Moore-Penrose Pseudoinverse

    output_44_0

    We saw that not all matrices have an inverse. It is unfortunate because the inverse is used to solve system of equations. In some cases, a system of equations has no solution, and thus the inverse doesn’t exist. However it can be useful to find a value that is almost a solution (in terms of minimizing the error). This can be done with the pseudoinverse! We will see for instance how we can find the best-fit line of a set of data points with the pseudoinverse.

  10. The Trace Operator

    Calculating the trace of a matrix

    The trace of matrix

    We will see what is the Trace of a matrix. It will be needed for the last chapter on the Principal Component Analysis (PCA).

  11. The Determinant

    Comparison of positive and negative determinant

    Link between the determinant of a matrix and the transformation associated with it

    This chapter is about the determinant of a matrix. This special number can tell us a lot of things about our matrix!

  12. Example: Principal Components Analysis

    Mechanism of the gradient descent algorithm **Gradient descent**

    This is the last chapter of this series on linear algebra! It is about Principal Components Analysis (PCA). We will use some knowledge that we acquired along the preceding chapters to understand this important data analysis tool!

Requirements

This content is aimed at beginners but it would be nice to have at least some experience with mathematics.

Enjoy

I hope that you will find something interesting in this series. I tried to be as accurate as I could. If you find errors/misunderstandings/typos… Please report it! You can send me emails or open issues and pull request in the notebooks Github.

References

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Owner
hadrienj
Data and Machine Learning - Freelance. Previously Machine Learning Scientist at Ava. Previously PhD Student at Ecole Normal Supérieure.
hadrienj
List of short Codeforces problems with a statement of 1000 characters or less. Python script and data files included.

Shortest problems on Codeforces List of Codeforces problems with a short problem statement of 1000 characters or less. Sorted for each rating level. B

32 Dec 24, 2022
A collection of Python library code for building Python applications.

Abseil Python Common Libraries This repository is a collection of Python library code for building Python applications. The code is collected from Goo

Abseil 2k Jan 07, 2023
Vaccine for STOP/DJVU ransomware, prevents encryption

STOP/DJVU Ransomware Vaccine Prevents STOP/DJVU Ransomware from encrypting your files. This tool does not prevent the infection itself. STOP ransomwar

Karsten Hahn 16 May 31, 2022
HPomb Is Socail Engineering Tool , Used For Bombing , Spoofing and Anonymity Available For Linux And Android(Termux)

HPomb v2020.02 Coming Soon Created By Secanonm HPomb Is Socail Engineering Tool , Used For Bombing , Spoofing and Anonymity Available For Linux And An

Secanonm 10 Jul 25, 2022
A python script for compiling and executing .cc files

Debug And Run A python script for compiling and executing .cc files Example dbrun fname.cc [DEBUG MODE] Compiling fname.cc with C++17 ------------

1 May 28, 2022
UF3: a python library for generating ultra-fast interatomic potentials

Ultra-Fast Force Fields (UF3) S. R. Xie, M. Rupp, and R. G. Hennig, "Ultra-fast interpretable machine-learning potentials", preprint arXiv:2110.00624

Ultra-Fast Force Fields 24 Nov 13, 2022
Learn to code in any language. If

Learn to Code It is an intiiative undertaken by Student Ambassadors Club, Jamshoro for students who are absolute begineers in programming and want to

Student Ambassadors' Club at Mehran UET 15 Oct 19, 2022
A browser login credentials thief for windows and Linux

Thief 🦹🏻 A browser login credentials thief for windows and Linux Python script to decrypt login credentials from browsers in windows or linux Decryp

Ash 1 Dec 13, 2021
Rick Astley Language is a rick roll oriented, dynamic, strong, esoteric programming language.

Rick Roll Language / Rick Astley Language A rick roll oriented, dynamic, strong, esoteric programming language. Prolegomenon The reasons that I made t

Rick Roll Programming Language 658 Jan 09, 2023
Simple project to assist in tracking/logging my working hours

Fill working hours Basic script to assist in the logging/tracking of my working hours How it works Create a file called projects.json in this director

Robin Kennedy-Reid 2 Oct 31, 2022
A smart personal companion and health assistant.

Steps to Install : Clone the repository Go to ResQ-Sources Execute ResQ-Lite.py --: Manual Controls : DanceRobot.py --: You can call functions like fo

Tuhinadri Banerjee 1 May 25, 2022
Github Star Tracking app with Streamlit

github-star-tracking-python-app Github Star Tracking app with Streamlit #8daysofstreamlit How to run it locally? Clone or Download & Unzip the Repo En

amrrs 4 Sep 22, 2022
Web service which feeds Navitia with real-time disruptions

Chaos Chaos is the web service which can feed Navitia with real-time disruptions. It can work together with Kirin which can feed Navitia with real-tim

KISIO Digital 7 Jan 07, 2022
Repository for my Monika Assistant project

Monika_Assistant Repository for my Monika Assistant project Major changes: Added face tracker Added manual daily log to see how long it takes me to fi

3 Jan 10, 2022
A chain of stores wants a 3-month demand forecast for its 10 different stores and 50 different products.

Demand Forecasting Objective A chain store wants a machine learning project for a 3-month demand forecast for 10 different stores and 50 different pro

2 Jan 06, 2022
An unofficial opensource Pokemon cursor theme for Windows and Linux.

pokemon-cursor An unofficial opensource Pokemon cursor theme for Windows and Linux. Cursor Sizes 22 24 28 32 40 48 56 64 72 80 88 96 Colors Quick inst

Kaiz Khatri 72 Dec 26, 2022
Projeto para ajudar no aprendizado da linguagem Pyhon

Economize Este projeto tem o intuito de criar desáfios para a codificação em Python, fazendo com que haja um maior entendimento da linguagem em seu to

Lucas Cunha Rodrigues 1 Dec 16, 2021
Final Fantasy XIV Auto House Clicker

Final Fantasy XIV Auto House Clicker

KanameS 0 Mar 31, 2022
A rough GSL work DynSAGE of my graduation project

DynSAGE Codes w.r.t DynSAGE-Diffuse can be found in function apply_dyn_model_v2 of src/utils.py. The training entrance is Line 144 - 155 of src/main.p

Yuhan Wang 3 Mar 22, 2022
Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store.

Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store. I used the dataset given to write a program that ranks these places.

Mahmoud 1 Dec 11, 2021