Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

Overview

GSL - Zero-shot Synthesis with Group-Supervised Learning

image Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD, and Fonts). Bottom: training images (attributes are known). Top: Test image (attributes are a query).

Zero-shot Synthesis with Group-Supervised Learning
Yunhao Ge, Sami Abu-El-Haija, Gan Xin, Laurent Itti
International Conference on Learning Representations (ICLR), 2021

[Paper] [Project Page] [Fonts dataset]

To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. (i.e., images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars.

[We are actively updating the code]

Getting Started

Installation

  • Dependencies
python 3.6.4
pytorch 0.3.1.post2
visdom
tqdm

  • Clone this repo:
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix

Datasets

  • iLab-20M, is an attributed dataset containing images of toy vehicles placed on a turntable using 11 cameras at different viewing points. There are 3 attribute classes: vehicle identity: 15 categories, each having 25-160 instances; pose; and backgrounds: over 14 for each identity: projecting vehicles in relevant contexts. You can download a subset of iLab-20M that we used in our paper here: iLab-6pose [http://ilab.usc.edu/datasets/iLab_6pose.zip]

  • Fonts, is a computer-generated RGB image datasets. Each image, with 128 * 128 pixels, contains an alphabet letter rendered using 5 independent generating attributes: letter identity, size, font color, background color and font. you can download the fonts dataset at here: Fonts [http://ilab.usc.edu/datasets/fonts].

  • RaFD contains pictures of 67 models displaying 8 emotional expressions taken by 5 different camera angles simultaneously. There are 3 attributes: identity, camera position (pose), and expression. To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website.

  • dSprites, is a dataset of 2D shapes procedurally generated from 6 ground truth independent latent factors. These factors are color, shape, scale, rotation, x and y positions of a sprite. you can download the dSprites dataset here dSprites

Datasets Preprocess

To efficiently access the dataset in a manner of Group-Supervised Learning, some dataset need preprocess.

  • For iLab-20M dataset, after downloading iLab-6pose subset, please run python3 ./utils/ilab_data_preprocess.py
  • For RaFD dataset, after downloading, please run python3 ./utils/rafd_data_preprocess.py
  • For desprites dataset, after downloading, please run python3 ./utils/desprites_data_preprocess.py
  • For Fonts dataset, no preprocess needed.

After preprocess, please update the dataset path in '--dataset_path' parameter

Synthesis with pretrained model

You can download the pretrained models of ilab-20M, Fonts, RaFD and dsprites here pretrained models (http://ilab.usc.edu/datasets/GSL_pretrained_models.zip) and put them to ./checkpoints/pretrained_models The sample test images are in the ./checkpoints/test_imgs You can use the following sample commands to synthesize zero-shot images with our pretrained models:

  • For Fonts
python3 main.py --train False --dataset Fonts --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/fonts' --viz_name fonts
  • For iLab-20M
python3 main.py --train False --dataset ilab-20M --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/ilab_20M' --viz_name ilab-20m
  • For RaFD
python3 main.py --train False --dataset RaFD --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/rafd' --viz_name rafd
  • For dsprites
python3 main.py --train False --dataset dsprites--pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/dsprites' --viz_name dsprites

Train GZS-Net on datasets used in paper

Group-Supervised Zero-shot Synthesis Network (GZS-Net) is an implemetation of Group-Supervised Learning with only reconstruction loss. If you want to train GZS-Net with the 4 datasets used in paper (Fonts, iLab-20M, RaFD, dSprites), please use 'train.py' with the dataset name, dataset path and visualize pannel name in Visdom. Note: you can also set the hyperparameter of lr, batchsize, backbone structure in train.py Here are some examples:

  • For Fonts
python3 main.py --train True --dataset Fonts --dataset_path YOUR_LOCAL_PATH_OF_FONTS --viz_name fonts
  • For iLab-20M
python3 main.py --train True --dataset ilab-20M --dataset_path YOUR_LOCAL_PATH_OF_ILAB --viz_name ilab-20m
  • For RaFD
python3 main.py --train True --dataset RaFD --dataset_path YOUR_LOCAL_PATH_OF_RaFD --viz_name rafd
  • For dsprites
python3 main.py --train True --dataset dsprites--dataset_path YOUR_LOCAL_PATH_OF_DSPRITES --viz_name dsprites

Train GZS-Net on your own dataset

To use our GZS-Net on you own dataset, before training, please refer the admissible dataset description in our paper. Note: The high level training strategy of the 4 dataset that paper used (Fonts, iLab-20M, RaFD, dSprites) is shown in Figure.3 in our paper. However, to make our method more general and compatale with more dataset, we propose a easier way to train our GZS-Net, we called 'sample edge strategy' to achieve 'One-Overlap Attribute Swap': In each training step, we sample n different edges (each edge corresponding to a specific attribute), and we release the two requirement of edge sample: (1) the two samples connected by an edge with attribute A should have same attribute A value but do not need to have different attribute values of other attributes (e.g. attribute B and C value can be the same). (2) we do not need center image x to keep showing in all edges, which means the connected images between edges can be totally different.

We train ilab-20M with the new training strategy and you can cgange our example code of ilab_20M_custom to your custom dataset.

  • Take ilab_20M_custom dataset as an example
python3 train.py  --dataset ilab_20M_custom --dataset_path YOUR_LOCAL_PATH_OF_CUSTOM_DATASET --viz_name ilab_20M_custom

Citation

If you use this code for your research, please cite our papers.

@inproceedings{ge2021zeroshot,
  title={Zero-shot Synthesis with Group-Supervised Learning},
  author={Yunhao Ge and Sami Abu-El-Haija and Gan Xin and Laurent Itti},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=8wqCDnBmnrT}
}

Acknowledgments

Our code is inspired by Beta-VAE.

Owner
Andy_Ge
Ph.D. Student in Computer Vision, Machine Learning, and Baby Learning
Andy_Ge
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022