take home quiz

Overview

guess the correlation

data inspection

a pretty normal distribution

dist

train/val/test split

splitting amount

.dataset:                150000 instances
├─80%─├─80%─training      96000 instances
│     └─20%─validation    24000 instances
├─20%─testing             30000 instances

after a rough glance at the dataset distribution, considered the dataset is pretty normal distributed and has enough instances to keep the variance low after 80/20 splitting.

splitting method

def _split_dataset(self, split, training=True):
    if split == 0.0:
        return None, None

    # self.correlations_frame = pd.read_csv('path/to/csv_file')
    n_samples = len(self.correlations_frame)

    idx_full = np.arange(n_samples)

    # fix seed for referenceable testing set
    np.random.seed(0)
    np.random.shuffle(idx_full)

    if isinstance(split, int):
        assert split > 0
        assert split < n_samples, "testing set size is configured to be larger than entire dataset."
        len_test = split
    else:
        len_test = int(n_samples * split)

    test_idx = idx_full[0:len_test]
    train_idx = np.delete(idx_full, np.arange(0, len_test))

    if training:
        dataset = self.correlations_frame.ix[train_idx]
    else:
        dataset = self.correlations_frame.ix[test_idx]

    return dataset

training/validation splitting uses the same logic

model inspection

CorrelationModel(
  (features): Sequential(
    (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2))
    #(0): params: (3*3*1+1) * 16 = 160
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(1): params: 16 * 2 = 32
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2))
    #(4): params: (3*3*16+1) * 32 = 4640
    (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(5): params: 32 * 2 = 64
    (6): ReLU(inplace=True)
    (7): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(8): params: (3*3*32+1) * 64 = 18496
    (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(9): params: 64 * 2 = 128
    (10): ReLU(inplace=True)
    (11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (12): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(12): params: (3*3*64+1) * 32 = 18464
    (13): ReLU(inplace=True)
    (14): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (15): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#15): params: (3*3*32+1) * 16 = 4624
    (16): ReLU(inplace=True)
    (17): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (18): Conv2d(16, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#18): params: (3*3*16+1) * 8 = 1160
    (19): ReLU(inplace=True)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (linear): Sequential(
    (0): Conv2d(8, 1, kernel_size=(1, 1), stride=(1, 1))
    #(0): params: (8+1) * 1 = 9
    (1): Tanh()
  )
)
Trainable parameters: 47777

loss function

the loss function of choice is smooth_l1, which has the advantages of both l1 and l2 loss

def SmoothL1(yhat, y):                                                  <--- final choice
    return torch.nn.functional.smooth_l1_loss(yhat, y)

def MSELoss(yhat, y):
    return torch.nn.functional.mse_loss(yhat, y)

def RMSELoss(yhat, y):
    return torch.sqrt(MSELoss(yhat, y))

def MSLELoss(yhat, y):
    return MSELoss(torch.log(yhat + 1), torch.log(y + 1))

def RMSLELoss(yhat, y):
    return torch.sqrt(MSELoss(torch.log(yhat + 1), torch.log(y + 1)))

evaluation metric

def mse(output, target):
    # mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(MSELoss(output, target)).item()
    return mae / len(target)

def mae(output, target):
    # mean absolute error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(abs(target-output)).item()
    return mae / len(target)

def mape(output, target):
    # mean absolute percentage error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mape = torch.sum(abs((target-output)/target)).item()
    return mape / len(target)

def rmse(output, target):
    # root mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmse = torch.sum(torch.sqrt(MSELoss(output, target))).item()
    return rmse / len(target)

def msle(output, target):
    # mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        msle = torch.sum(MSELoss(torch.log(output + 1), torch.log(target + 1))).item()
    return msle / len(target)

def rmsle(output, target):
    # root mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmsle = torch.sum(torch.sqrt(MSELoss(torch.log(output + 1), torch.log(target + 1)))).item()
    return rmsle / len(target)

training result

trainer - INFO -     epoch          : 1
trainer - INFO -     smooth_l1loss  : 0.0029358651146370296
trainer - INFO -     mse            : 9.174910654958997e-05
trainer - INFO -     mae            : 0.04508562459920844
trainer - INFO -     mape           : 0.6447089369893074
trainer - INFO -     rmse           : 0.0008826211761528006
trainer - INFO -     msle           : 0.0002885178522810747
trainer - INFO -     rmsle          : 0.0016459243478796756
trainer - INFO -     val_loss       : 0.000569225614812846
trainer - INFO -     val_mse        : 1.7788300462901436e-05
trainer - INFO -     val_mae        : 0.026543946107228596
trainer - INFO -     val_mape       : 0.48582320946455004
trainer - INFO -     val_rmse       : 0.0005245986936303476
trainer - INFO -     val_msle       : 9.091730712680146e-05
trainer - INFO -     val_rmsle      : 0.0009993902465794235
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 7                           <--- final model
trainer - INFO -     smooth_l1loss  : 0.00017805844737449661
trainer - INFO -     mse            : 5.564326480453019e-06
trainer - INFO -     mae            : 0.01469234253714482
trainer - INFO -     mape           : 0.2645472921580076
trainer - INFO -     rmse           : 0.0002925463738307978
trainer - INFO -     msle           : 3.3151906652316634e-05
trainer - INFO -     rmsle          : 0.0005688522928685416
trainer - INFO -     val_loss       : 0.00017794455110561102
trainer - INFO -     val_mse        : 5.560767222050344e-06
trainer - INFO -     val_mae        : 0.014510956528286139
trainer - INFO -     val_mape       : 0.25059283276398975
trainer - INFO -     val_rmse       : 0.0002930224982944007
trainer - INFO -     val_msle       : 3.403802761204133e-05
trainer - INFO -     val_rmsle      : 0.0005525556141122554
trainer - INFO - Saving checkpoint: saved/models/correlation/1031_043742/checkpoint-epoch7.pth ...
trainer - INFO - Saving current best: model_best.pth ...
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 10                           <--- early stop
trainer - INFO -     smooth_l1loss  : 0.00014610137016279624
trainer - INFO -     mse            : 4.565667817587382e-06
trainer - INFO -     mae            : 0.013266990386570494
trainer - INFO -     mape           : 0.24146838792661826
trainer - INFO -     rmse           : 0.00026499629460158757
trainer - INFO -     msle           : 2.77259079665176e-05
trainer - INFO -     rmsle          : 0.0005148174095957074
trainer - INFO -     val_loss       : 0.00018394086218904705
trainer - INFO -     val_mse        : 5.74815194340772e-06
trainer - INFO -     val_mae        : 0.01494487459709247
trainer - INFO -     val_mape       : 0.27262411576509477
trainer - INFO -     val_rmse       : 0.0002979971170425415
trainer - INFO -     val_msle       : 3.1850282267744966e-05
trainer - INFO -     val_rmsle      : 0.0005451643197642019
trainer - INFO - Validation performance didn't improve for 2 epochs. Training stops.

loss graph dist

testing result

Loading checkpoint: saved/models/correlation/model_best.pth ...
Done
Testing set samples: 30000
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 59/59 [00:19<00:00,  3.04it/s]
Testing result:
{'loss': 0.0001722179292468354, 'mse': 6.77461177110672e-07, 'mae': 0.014289384969075522, 'mape': 0.2813985677083333, 'rmse': 3.6473782857259115e-05, 'msle': 3.554690380891164e-06, 'rmsle': 7.881066799163819e-05}
Owner
HR Wu
HR Wu
Reference python implementation of Chia pool operations for pool operators

This repository provides a sample server written in python, which is meant to server as a basis for a Chia Pool. While this is a fully functional implementation, it requires some work in scalability

Chia Network 451 Dec 13, 2022
To attract customers, the hotel chain has added to its website the ability to book a room without prepayment

To attract customers, the hotel chain has added to its website the ability to book a room without prepayment. We need to predict whether the customer is going to reject the booking or not. Since in c

Taychinov Evgeniy 0 Aug 04, 2022
📙 Super lightweight function registries for your library

catalogue: Super lightweight function registries for your library catalogue is a tiny, zero-dependencies library that makes it easy to add function (o

Explosion 139 Jan 02, 2023
PyLaboratory 0 Feb 07, 2022
A Brainfuck interpreter written in Python.

A Brainfuck interpreter written in Python.

Ethan Evans 1 Dec 05, 2021
Woltcheck - Python script to check if a wolt restaurant is ready to deliver to your location

woltcheck Python script to check if a wolt restaurant is ready to deliver to you

30 Sep 13, 2022
Learning a Little about Containerlab

Learning a Little about Containerlab Hello all. This is the respository based on this blog post. Getting Started Feel free to use this example. You wi

10 Oct 16, 2022
An example of Connecting a MySQL Database with Python Code

An example of Connecting a MySQL Database with Python Code And How to install Table of contents General info Technologies Setup General info In this p

Mohammad Hosseinzadeh 1 Nov 23, 2021
Python implementation of an automatic parallel parking system in a virtual environment, including path planning, path tracking, and parallel parking

Automatic Parallel Parking: Path Planning, Path Tracking & Control This repository contains a python implementation of an automatic parallel parking s

134 Jan 09, 2023
Basic Hspice runner with Python

HSpicePy Bilgisayarınıza PATH değişkenlerine eklediğiniz HSPICE programını python ile çalıştırmanızı sağlayan basit bir araç. A simple tool that allow

1 Nov 16, 2021
1. 네이버 카페 댓글을 빨리 다는 기능

naver_autoprogram 기능 설명 네이버 카페 댓글을 빨리 다는 기능 네이버 카페 자동 출석 체크 기능 동작 방식 카페 댓글 기능 기본 동작은 주기적인 스케쥴 동작으로 해당 카페 ID 와 특정 API 주소로 대상이 새글을 작성했는지 체크. 해당 대상이 새글 등

1 Dec 22, 2021
A general-purpose wallet generator, for supported coins only

2gen A general-purpose generator for keys. Designed for all cryptocurrencies supporting the Bitcoin format of keys and addresses. Functions To enable

Vlad Usatii 1 Jan 12, 2022
A bot to view Dilbert comics directly from Discord and get updates of the comics automatically.

A bot to view Dilbert comics directly from Discord and get updates of the comics automatically

Raghav Sharma 3 Nov 30, 2022
Dashboard to view a stock's basic information, RSI, Bollinger bands, EMA, SMA, sentiment analysis via Python

Your One And Only Trading Bot No seriously, we mean it! Contributors Jihad Al-Hussain John Gaffney Shanel Kuchera Kazuki Takehashi Patrick Thornquist

5 May 21, 2022
Toppr Os Auto Class Joiner

Toppr Os Auto Class Joiner Toppr os is a irritating platform to work with especially for students it takes a while and is problematic most of the time

1 Dec 18, 2021
Blender Add-on to Add Metal Materials to Your Scene

Blender QMM (Quick Metal Materials) Blender Addon to Add Metal Materials to Your Scene Installation Download the latest ZIP from Releases. Usage This

Don Schnitzius 27 Dec 26, 2022
万能通用对象池,可以池化任意自定义类型的对象。

pip install universal_object_pool 此包能够将一切任意类型的python对象池化,是万能池,适用范围远大于单一用途的mysql连接池 http连接池等。 框架使用对象池包,自带实现了4个对象池。可以直接开箱用这四个对象池,也可以作为例子学习对象池用法。

12 Dec 15, 2022
Account Manager / Nuker with GUI.

Account Manager / Nuker Remove all friends Block all friends Leave all servers Mass create servers Close all dms Mass dm Exit Setup git clone https://

Lodi#0001 1 Oct 23, 2021
Bookmarkarchiver - Python script that archives all of your bookmarks on the Internet Archive

bookmarkarchiver Python script that archives all of your bookmarks on the Internet Archive. Supports all major browsers. bookmarkarchiver uses the off

Anthony Chen 3 Oct 09, 2022
A country information finder module

A country information finder module

Fayas Noushad 3 Nov 28, 2021