[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

Overview

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts.

by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC Berkeley/ICSI and NTU

International Conference on Learning Representations (ICLR), 2021. Spotlight Presentation

Project Page | PDF | Preprint | OpenReview | Slides | Citation

This repository contains an official re-implementation of RIDE from the authors, while also has plans to support other works on long-tailed recognition. Further information please contact Xudong Wang and Long Lian.

Citation

If you find our work inspiring or use our codebase in your research, please consider giving a star and a citation.

@inproceedings{wang2021longtailed,
  title={Long-tailed Recognition by Routing Diverse Distribution-Aware Experts},
  author={Xudong Wang and Long Lian and Zhongqi Miao and Ziwei Liu and Stella Yu},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=D9I3drBz4UC}
}

Supported Methods for Long-tailed Recognition:

  • RIDE
  • Cross-Entropy (CE) Loss
  • Focal Loss
  • LDAM Loss
  • Decouple: cRT (limited support for now)
  • Decouple: tau-normalization (limited support for now)

Updates

[04/2021] Pre-trained models are avaliable in model zoo.

[12/2020] We added an approximate GFLops counter. See usages below. We also refactored the code and fixed a few errors.

[12/2020] We have limited support on cRT and tau-norm in load_stage1 option and t-normalization.py, please look at the code comments for instructions while we are still working on it.

[12/2020] Initial Commit. We re-implemented RIDE in this repo. LDAM/Focal/Cross-Entropy loss is also re-implemented (instruction below).

Table of contents

Requirements

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Hardware requirements

8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

How to get pretrained checkpoints

We have a model zoo available.

Training and Evaluation Instructions

Imbalanced CIFAR 100/CIFAR100-LT

RIDE Without Distill (Stage 1)
python train.py -c "configs/config_imbalance_cifar100_ride.json" --reduce_dimension 1 --num_experts 3

Note: --reduce_dimension 1 means set reduce dimension to True. The template has an issue with bool arguments so int argument is used here. However, any non-zero value will be equivalent to bool True.

RIDE With Distill (Stage 1)
python train.py -c "configs/config_imbalance_cifar100_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

Distillation is not required but could be performed if you'd like further improvements.

RIDE Expert Assignment Module Training (Stage 2)
python train.py -c "configs/config_imbalance_cifar100_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

Note: different runs will result in different EA modules with different trade-off. Some modules give higher accuracy but require higher FLOps. Although the only difference is not underlying ability to classify but the "easiness to satisfy and stop". You can tune the pos_weight if you think the EA module consumes too much compute power or is using too few expert.

ImageNet-LT

RIDE Without Distill (Stage 1)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_ride.json" --reduce_dimension 1 --num_experts 3
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_ride.json" --reduce_dimension 1 --num_experts 3
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_ride.json" --reduce_dimension 1 --num_experts 3

RIDE With Distill (Stage 1)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

RIDE Expert Assignment Module Training (Stage 2)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

iNaturalist

RIDE Without Distill (Stage 1)

python train.py -c "configs/config_iNaturalist_resnet50_ride.json" --reduce_dimension 1 --num_experts 3

RIDE With Distill (Stage 1)

python train.py -c "configs/config_iNaturalist_resnet50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

RIDE Expert Assignment Module Training (Stage 2)

python train.py -c "configs/config_iNaturalist_resnet50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

Using Other Methods with RIDE

  • Focal Loss: switch the loss to Focal Loss
  • Cross Entropy: switch the loss to Cross Entropy Loss

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

Please see the pytorch template that we use for additional more general usages of this project (e.g. loading from a checkpoint, etc.).

GFLops calculation

We provide an experimental support for approximate GFLops calculation. Please open an issue if you encounter any problem or meet inconsistency in GFLops.

You need to install thop package first. Then, according to your model, run python -m utils.gflops (args) in the project directory.

Examples and explanations

Use python -m utils.gflops to see the documents as well as explanations for this calculator.

ImageNet-LT
python -m utils.gflops ResNeXt50Model 0 --num_experts 3 --reduce_dim True --use_norm False

To change model, switch ResNeXt50Model to the ones used in your config. use_norm comes with LDAM-based methods (including RIDE). reduce_dim is used in default RIDE models. The 0 in the command line indicates the dataset.

All supported datasets:

  • 0: ImageNet-LT
  • 1: iNaturalist
  • 2: Imbalance CIFAR 100
iNaturalist
python -m utils.gflops ResNet50Model 1 --num_experts 3 --reduce_dim True --use_norm True
Imbalance CIFAR 100
python -m utils.gflops ResNet32Model 2 --num_experts 3 --reduce_dim True --use_norm True
Special circumstances: calculate the approximate GFLops in models with expert assignment module

We provide a ea_percentage for specifying the percentage of data that pass each expert. Note that you need to switch to the EA model as well since you actually use EA model instead of the original model in training and inference.

An example:

python -m utils.gflops ResNet32EAModel 2 --num_experts 3 --reduce_dim True --use_norm True --ea_percentage 40.99,9.47,49.54

FAQ

See FAQ.

How to get support from us?

If you have any general questions, feel free to email us at longlian at berkeley.edu and xdwang at eecs.berkeley.edu. If you have code or implementation-related questions, please feel free to send emails to us or open an issue in this codebase (We recommend that you open an issue in this codebase, because your questions may help others).

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This is a project based on this pytorch template. The pytorch template is inspired by the project Tensorflow-Project-Template by Mahmoud Gemy

The ResNet and ResNeXt in fb_resnets are based on from Classifier-Balancing/Decouple. The ResNet in ldam_drw_resnets/LDAM loss/CIFAR-LT are based on LDAM-DRW. KD implementation takes references from CRD/RepDistiller.

Owner
Xudong (Frank) Wang
Ph.D. Student @ EECS, UC Berkeley; Graduate Student Researcher @ International Computer Science Institute, Berkeley, USA
Xudong (Frank) Wang
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022