Show, Edit and Tell: A Framework for Editing Image Captions, CVPR 2020

Related tags

Testingshow-edit-tell
Overview

Show, Edit and Tell: A Framework for Editing Image Captions | arXiv

This contains the source code for Show, Edit and Tell: A Framework for Editing Image Captions, to appear at CVPR 2020

Requirements

  • Python 3.6 or 3.7
  • PyTorch 1.2

For evaluation, you also need:

Argument Parser is currently not supported. We will add support to it soon.

Pretrained Models

You can download the pretrained models from here. Place them in eval folder.

Download and Prepare Features

In this work, we use 36 fixed bottom-up features. If you wish to use the adaptive features (10-100), please refer to adaptive_features folder in this repository and follow the instructions.

First, download the fixed features from here and unzip the file. Place the unzipped folder in bottom-up_features folder.

Next type this command:

python bottom-up_features/tsv.py

This command will create the following files:

  • An HDF5 file containing the bottom up image features for train and val splits, 36 per image for each split, in an (I, 36, 2048) tensor where I is the number of images in the split.
  • PKL files that contain training and validation image IDs mapping to index in HDF5 dataset created above.

Download/Prepare Caption Data

You can either download all the related caption data files from here or create them yourself. The folder contains the following:

  • WORDMAP_coco: maps the words to indices
  • CAPUTIL: stores the information about the existing captions in a dictionary organized as follows: {"COCO_image_name": {"caption": "existing caption to be edited", "encoded_previous_caption": an encoded list of the words, "previous_caption_length": a list contaning the length of the caption, "image_ids": the COCO image id}
  • CAPTIONS the encoded ground-truth captions (a list with number_images x 5 lists. Example: we have 113,287 training images in Karpathy Split, thereofre there is 566,435 lists for the training split)
  • CAPLENS: the length of the ground-truth captions (a list with number_images x 5 vallues)
  • NAMES: the COCO image name in the same order as the CAPTIONS
  • GENOME_DETS: the splits and image ids for loading the images in accordance to the features file created above

If you'd like to create the caption data yourself, download Karpathy's Split training, validation, and test splits. This zip file contains the captions. Place the file in caption data folder. You should also have the pkl files created from the 'Download Features' section: train36_imgid2idx.pkl and val36_imgid2idx.pkl.

Next, run:

python preprocess_caps.py

This will dump all the files to the folder caption data.

Next, download the existing captios to be edited, and organize them in a list containing dictionaries with each dictionary in the following format: {"image_id": COCO_image_id, "caption": "caption to be edited", "file_name": "split\\COCO_image_name"}. For example: {"image_id": 522418, "caption": "a woman cutting a cake with a knife", "file_name": "val2014\\COCO_val2014_000000522418.jpg"}. In our work, we use the captions produced by AoANet.

Next, run:

python preprocess_existing_caps.py

This will dump all the existing caption files to the folder caption data.

Prepare/Download Sequence-Level Training Data

Download the RL-data for sequence-level training used for computing metric scores from here.

Alternitavely, you may prepare the data yourself:

Run the following command:

python preprocess_rl.py

This will dump two files in the data folder used for computing metric scores.

Training and Validation

XE training stage:

For training DCNet, run:

python dcnet.py

For optimizing DCNet with MSE, run:

python dcnet_with_mse.py

For training editnet:

python editnet.py
Cider-D Optimization stage:

For training DCNet, run:

python dcnet_rl.py

For training editnet:

python editnet_rl.py

Evaluation

Refer to eval folder for instructions. All the generated captions and scores from our model can be found in the outputs folder.

BLEU-1 BLEU-4 CIDEr SPICE
Cross-Entropy Loss 77.9 38.0 1.200 21.2
CIDEr Optimization 80.6 39.2 1.289 22.6

Citation

@InProceedings{Sammani_2020_CVPR,
author = {Sammani, Fawaz and Melas-Kyriazi, Luke},
title = {Show, Edit and Tell: A Framework for Editing Image Captions},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

References

Our code is mainly based on self-critical and show attend and tell. We thank both authors.

Owner
Fawaz Sammani
The human brain is a miracle every human has, and mathematically modelling that brain is an overwhelming matter! I like teaching machines vision-language
Fawaz Sammani
Django test runner using nose

django-nose django-nose provides all the goodness of nose in your Django tests, like: Testing just your apps by default, not all the standard ones tha

Jazzband 880 Dec 15, 2022
A utility for mocking out the Python Requests library.

Responses A utility library for mocking out the requests Python library. Note Responses requires Python 2.7 or newer, and requests = 2.0 Installing p

Sentry 3.8k Jan 03, 2023
Front End Test Automation with Pytest Framework

Front End Test Automation Framework with Pytest Installation and running instructions: 1. To install the framework on your local machine: clone the re

Sergey Kolokolov 2 Jun 17, 2022
Faker is a Python package that generates fake data for you.

Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in yo

Daniele Faraglia 15.2k Jan 01, 2023
A toolbar overlay for debugging Flask applications

Flask Debug-toolbar This is a port of the excellent django-debug-toolbar for Flask applications. Installation Installing is simple with pip: $ pip ins

863 Dec 29, 2022
Scalable user load testing tool written in Python

Locust Locust is an easy to use, scriptable and scalable performance testing tool. You define the behaviour of your users in regular Python code, inst

Locust.io 20.4k Jan 04, 2023
A python bot using the Selenium library to auto-buy specified sneakers on the nike.com website.

Sneaker-Bot-UK A python bot using the Selenium library to auto-buy specified sneakers on the nike.com website. This bot is still in development and is

Daniel Hinds 4 Dec 14, 2022
An Instagram bot that can mass text users, receive and read a text, and store it somewhere with user details.

Instagram Bot 🤖 July 14, 2021 Overview 👍 A multifunctionality automated instagram bot that can mass text users, receive and read a message and store

Abhilash Datta 14 Dec 06, 2022
Connexion-faker - Auto-generate mocks from your Connexion API using OpenAPI

Connexion Faker Get Started Install With poetry: poetry add connexion-faker # a

Erle Carrara 6 Dec 19, 2022
Automação de Processos (obtenção de informações com o Selenium), atualização de Planilha e Envio de E-mail.

Automação de Processo: Código para acompanhar o valor de algumas ações na B3. O código entra no Google Drive, puxa os valores das ações (pré estabelec

Hemili Beatriz 1 Jan 08, 2022
Tools for test driven data-wrangling and data validation.

datatest: Test driven data-wrangling and data validation Datatest helps to speed up and formalize data-wrangling and data validation tasks. It impleme

269 Dec 16, 2022
UUM Merit Form Filler is a web automation which helps automate entering a matric number to the UUM system in order for participants to obtain a merit

About UUM Merit Form Filler UUM Merit Form Filler is a web automation which helps automate entering a matric number to the UUM system in order for par

Ilham Rachmat 3 May 31, 2022
자동 건강상태 자가진단 메크로 서버전용

Auto-Self-Diagnosis-for-server 자동 자가진단 메크로 서버전용 이 프로그램은 SaidBySolo님의 auto-self-diagnosis를 참고하여 제작하였습니다. 개인 사용 목적으로 제작하였기 때문에 추후 업데이트는 진행하지 않습니다. 의존성 G

JJooni 3 Dec 04, 2021
Turn any OpenAPI2/3 and Postman Collection file into an API server with mocking, transformations and validations.

Prism is a set of packages for API mocking and contract testing with OpenAPI v2 (formerly known as Swagger) and OpenAPI v3.x. Mock Servers: Life-like

Stoplight 3.3k Jan 05, 2023
hCaptcha solver and bypasser for Python Selenium. Simple website to try to solve hCaptcha.

hCaptcha solver for Python Selenium. Many thanks to engageub for his hCaptcha solver userscript. This script is solely intended for the use of educati

Maxime Dréan 59 Dec 25, 2022
Pytest modified env

Pytest plugin to fail a test if it leaves modified os.environ afterwards.

wemake.services 7 Sep 11, 2022
Make Selenium work on Github Actions

Make Selenium work on Github Actions Scraping with BeautifulSoup on GitHub Actions is easy-peasy. But what about Selenium?? After you jump through som

Jonathan Soma 33 Dec 27, 2022
This is a simple software for fetching new changes to remote repositories automatically.

Git Autofetch Git Autofetch is a simple software for fetching new changes from a repo to local repositories after a set time interval. This program is

Shreyas Ashtamkar 10 Jul 21, 2022
A browser automation framework and ecosystem.

Selenium Selenium is an umbrella project encapsulating a variety of tools and libraries enabling web browser automation. Selenium specifically provide

Selenium 25.5k Jan 01, 2023
This package is a python library with tools for the Molecular Simulation - Software Gromos.

This package is a python library with tools for the Molecular Simulation - Software Gromos. It allows you to easily set up, manage and analyze simulations in python.

14 Sep 28, 2022