Modelling the 30 salamander problem from `Pure Mathematics` by Martin Liebeck

Overview

Salamanders on an island

The Problem

From A Concise Introduction to Pure Mathematics By Martin Liebeck

Critic Ivor Smallbrain is watching the horror movie Salamanders on a Desert Island. In the film, there are 30 salamanders living on a desert island: 15 are red, 7 blue and 8 green. When two of a different colour meet, horrifyingly they both change into the third colour. (For example, if a red and a green meet, they both become blue.) When two of the same colour meet, they change into both of the other colours. (For example, if two reds meet, one becomes green and one becomes blue.) It is all quite terrifying. In between being horrified and terrified, Ivor idly wonders whether it could ever happen that at some instant in the future, all of the salamanders would be red. Can you help him ? (Hint: Consider the remainders of the totals of each colour when you divide by 3.)

Simulate the problem

import numpy as np
import random

Create the starting salamander population

pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array
all_col = set(pop) # Create set of all possible colours

pop
array(['R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R',
       'R', 'R', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'G', 'G', 'G', 'G',
       'G', 'G', 'G', 'G'], dtype='
   

Define a function for a random meeting

def meeting(gd = False):
    """
    Simulate meeting of 2 salamnders.
    Each is chosen at random from the list (without replacement)
    `gd = True` applies a proxy of gradient descent optimisation, avoiding reduction in the number of red salamanders
    """

    # Pick 2 salamanders at random
    rand_ind = random.sample(range(pop.size), 2)
    rand_sam = pop[rand_ind]

    x = rand_sam[0]
    y = rand_sam[1]

    # Apply gradient descent - skip the meeting if a red is selected, to avoid reducng the Reds number
    # (Note this is a gd proxy to reduce computation - it "should" be applied on the result of calculation rather than the input)
    if gd == True:
        if (x == 'R') | (y == 'R'): return

    # Find the colour(s) not selected
    diff = list(all_col.difference(rand_sam))
    
    # The salamanders are the same colour
    if x == y: 
        x = diff[0]
        y = diff[1]
    else: # The salamanders are different colour
        x = diff[0]
        y = x

    # Change the colours of the chosen salamanders
    pop[rand_ind[0]] = x
    pop[rand_ind[1]] = y

Run 1 million simulations

# Set number of meetings to simulate
iters = 1000000

# Run simulation of meetings
from collections import Counter
from tqdm.notebook import tqdm

random.seed(2718)
tracker = dict()
for i in tqdm(range(iters), miniters=iters/100):
    # Simulate a meeting
    meeting()
    # Save resulting population state
    tracker[i] = Counter(pop)
  0%|          | 0/1000000 [00:00

Analysis

The question posed gives a (big) hint to using modular arithmetic to assess this problem. A sample of the results is therefore taken and visualised in mod 3.

Sample first 100 results in modulo 3

# Sample the first 100 meetings to visualise progress
track_vals = list(tracker.values())
track_vals = track_vals[:100]

# Create a list of each colour in mod 3
r = []
b = []
g = []
for i in range(len(track_vals)):
    r.append(list(track_vals)[i]['R'] %3)
    b.append(list(track_vals)[i]['B'] %3)
    g.append(list(track_vals)[i]['G'] %3)
# Plot graph of population change in mod 3
import pylab as plt
from matplotlib.pyplot import figure
%matplotlib inline

figure(figsize=(25, 4), dpi=100)
plt.rcParams.update({'font.size': 15})

plt.plot(range(len(b)), b, 'b')
plt.plot(range(len(r)), r, 'r')
plt.plot(range(len(g)), g, 'g')
plt.title('Total Quantity of Salamanders in mod 3')
Text(0.5, 1.0, 'Total Quantity of Salamanders in mod 3')

png

Modulus importance

# Prepare some data for explanation
import pandas as pd
meet_s = [['-2','+1','+1']]
meet_s_mod = [['+1','+1','+1']]
meet_d = [['-1','-1','+2']]
meet_d_mod = [['+2','+2','+2']]

We observe that the red, blue, and green numbers are always different, and hold either a value of 0, 1, or 2 in mod3. This is important, as for there to be 30 Red salamanders, there need to be 0 Blue and 0 Green (total population is 30). In mod3, this would be equivalent to 0R, 0B, and 0G. In other words, for there to be all Red salamanders, there needs to be a combination of meetings such that all colours reach 0 (mod3). In this small sample, we can see that the values of each are always different in mod 3. Why is this?

The starting position of the population is 15R, 7B, and 8G. In mod3, this equates to 0R, 1B and 2G. Upon two salamanders of the same colour, x, meeting, we get a drop in 2 of that colour, and an increase of 1 for the other two colours, y and z:

pd.DataFrame(meet_s, ['xx'], ['x', 'y', 'z'])
x y z
xx -2 +1 +1

In mod3, this is equivalent to:

pd.DataFrame(meet_s_mod, ['xx'], ['x', 'y', 'z'])
x y z
xx +1 +1 +1

We see that for whichever colour, if the salamanders are the same colour, the same mathematical addition applies to all colours in mod3, such that there is no convergence between colours.
Two salamanders of different colour meeting results in:

pd.DataFrame(meet_d, ['xy'], ['x', 'y', 'z'])
x y z
xy -1 -1 +2

In mod3, this is rewritten:

pd.DataFrame(meet_d_mod, ['xy'], ['x', 'y', 'z'])
x y z
xy +2 +2 +2

Again, where salamander colours are different, there is no convergence between colours in mod3.

This exhausts all meeting possibilities, and shows there is no possibility of convergence between quantities of each colour in mod3. With this being the case, it is impossible for all to reach 0 (mod3). This means that there can never be 30 Red salamanders.

However, 29R is possible, with 0B and 1G. This maintains the count structure in mod3 as this would be 2R, 0B, 1G (mod3).

Total Reds

Max Reds

# Show how the number of reds changes over trials
r_vals = []
for trial in tracker.values():
    r_vals.append(trial['R'])

graph_len = np.min([250,len(r_vals)])
mov_max = int(np.ceil(len(r_vals)/graph_len))

red_mov_max = []
for i in range(graph_len):
    red_mov_max.append(np.max(r_vals[i*mov_max:(i+1)*mov_max]))

figure(figsize=(25, 4))
plt.plot(range(graph_len), red_mov_max, 'r')
plt.title('Max Quantity of Red Salamanders every ' + str(mov_max) + ' trials')
Text(0.5, 1.0, 'Max Quantity of Red Salamanders every 4000 trials')

png

We observe that even over 1 million trials, the maximum number of Red salamanders never reaches 29. This suggests that whilst 29R is a possibility, it is highly unlikely to occur through the random sampling used.

Frequency of Red count

# Count frequency of Reds quantities over the trials
import seaborn as sns

figure(figsize=(18, 7))
sns.set_style('darkgrid')
sns.histplot(r_vals, color='r')
plt.title('Histogram of Total Quantity of Red Salamanders')
Text(0.5, 1.0, 'Histogram of Total Quantity of Red Salamanders')

png

We observe that the histogram shows a bell-like curve of distribution. As may be expected, the modal number of Reds is 10, or 1/3 of the total population. This reflects that with more Reds present in the population, there is a higher probability of a Red being selected and therefore the number of Reds being reduced. The opposite can be observed below this level, and a similar graph would be expected for Blues and Greens.
We can see that the graph tails off drastically above 20R - if we were to assume that the number of Reds is approximately normally distributed, we could estimate the probability of getting the maximum number of Reds (29).

from scipy.stats import norm
mean = np.mean(r_vals)
std = np.std(r_vals)

norm.pdf(29, loc=mean, scale=std)
4.750575739333807e-12

This result suggests that, as a rough figure, even if we simulated 210 billion meetings, there would still be about a 37% chance (1/$e$) we would not reach the maximum of 29 Reds at any point!

NB: This is only if assuming a normal distribution, which the bounded data does not strictly fit.

Optimising the algorithm

Initially, we used a random choice of 2 salamanders at each meeting. However, it may be possible to optimise this process to reach 29R far quicker. If we only allow for meetings that increase the number of Reds, i.e. apply a gradient descent optimisation, we should reach our target in far fewer iterations.

# Reset population to the original starting point
pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array

# Set max number of iterations to 1000
iters = 1000

r_vals = []
for i in tqdm(range(iters)):
    # Simulate a meeting
    meeting(gd = True) # Set `gd = True` for gradient descent
    # Save resulting population state
    counter = Counter(pop)
    r_vals.append(counter['R'])
    # Stop if 29R is reached
    if counter['R'] == 29: break
  0%|          | 0/1000 [00:00
# Show how the number of reds changes over trials
figure(figsize=(18, 7))
plt.plot(range(len(r_vals)), r_vals, 'r')
plt.title('Total Quantity of Red Salamanders (Optimised Algorithm)')
Text(0.5, 1.0, 'Total Quantity of Red Salamanders (Optimised Algorithm)')

png

We can see that with the optimised algorithm, the maximum number of possible Reds, 29, was reached in under 1000 iterations.

Owner
Faisal Jina
- Data Science - Healthcare - Business - https://faisaljina.github.io
Faisal Jina
🔤 Measure edit distance based on keyboard layout

clavier Measure edit distance based on keyboard layout. Table of contents Table of contents Introduction Installation User guide Keyboard layouts Dist

Max Halford 42 Dec 18, 2022
Logging-monitoring-instrumentation - A brief repository on logging monitoring and instrumentation in Python

logging-monitoring-instrumentation A brief repository on logging monitoring and

Noah Gift 6 Feb 17, 2022
A C-like hardware description language (HDL) adding high level synthesis(HLS)-like automatic pipelining as a language construct/compiler feature.

██████╗ ██╗██████╗ ███████╗██╗ ██╗███╗ ██╗███████╗ ██████╗ ██╔══██╗██║██╔══██╗██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝ ██████╔╝██║██████╔╝█

Julian Kemmerer 391 Jan 01, 2023
A StarkNet project template based on a Pythonic environment

StarkNet Project Template This is an opinionated StarkNet project template. It is based around the Python's ecosystem and best practices. tox to manag

Francesco Ceccon 5 Apr 21, 2022
Youtube Channel Website

Videos-By-Sanjeevi Youtube Channel Website YouTube Channel Website Features: Free Hosting using GitHub Pages and open-source code base in GitHub. It c

Sanjeevi Subramani 5 Mar 26, 2022
Our Ping Pong Project of numerical analysis, 2nd year IC B2 INSA Toulouse

Ping Pong Project The objective of this project was to determine the moment of impact of the ball with the ground. To do this, we used different model

0 Jan 02, 2022
SECRET SANTA / KRIS KINGLE

SECRET SANTA / KRIS KINGLE Note: Before executing the script, make sure to turn

DEV_FINWIZ 10 Dec 06, 2022
A tool to allow New World players to calculate the best place to put their Attribute Points for their build and level

New World Damage Simulator A tool designed to take a characters base stats including armor and weapons, level, and base damage of their items (slash d

Joseph P Langford 31 Nov 01, 2022
Library support get vocabulary from MEM

Features: Support scraping the courses in MEM to take the vocabulary Translate the words to your own language Get the IPA for the English course Insta

Joseph Quang 4 Aug 13, 2022
Box CRUD API With Python

Box CRUD API: Consider a store which has an inventory of boxes which are all cuboid(which have length breadth and height). Each Cuboid has been added

Akhil Bhalerao 3 Feb 17, 2022
Sync SiYuanNote & Yuque.

SiyuanYuque Sync SiYuanNote & Yuque. Install Use pip to install. pip install SiyuanYuque Execute like this: python -m SiyuanYuque Remember to create a

Clouder 23 Nov 25, 2022
Blender Add-on to Add Metal Materials to Your Scene

Blender QMM (Quick Metal Materials) Blender Addon to Add Metal Materials to Your Scene Installation Download the latest ZIP from Releases. Usage This

Don Schnitzius 27 Dec 26, 2022
Explores the python bytecode, provides some tools to access it for fun and profit.

Pyasmtools - looking at the python bytecode for fun and profit. The pyasmtools library is made up of two parts A python bytecode disassembler . See Py

Michael Moser 299 Jan 04, 2023
LanguageCreator - Simple library for easy creation transpilator.

LanguageCreator - Simple library for easy creation transpilator. Create transpilators in one hour! Install. Download code, rename folder to "LanguageC

Ivan Perzhinsky. 2 Dec 31, 2021
Encode and decode cancro lang files to and from brainfuck

cancrolang Encode and decode cancro lang files to and from brainfuck. examples python3 main.py -f hello.cancro --run Hello World! the interpreter is n

witer33 1 Dec 20, 2021
Controller state monitor plugin for EVA ICS

eva-plugin-cmon Controller status monitor plugin for EVA ICS Monitors connected controllers status in SFA and pushes measurements into an external Inf

Altertech 1 Nov 06, 2021
Python implementation of the Learning Time-Series Shapelets method, that learns a shapelet-based time-series classifier with gradient descent.

shaplets Python implementation of the Learning Time-Series Shapelets method by Josif Grabocka et al., that learns a shapelet-based time-series classif

Mohamed Haseeb 187 Dec 14, 2022
Slimbook Battery 4 is the new version with new features that improves battery control and increases battery duration in laptops.

Slimbookbattery Slimbook Battery 4 is the new version with new features that improves battery control and increases battery duration in laptops. This

SLIMBOOK TEAM 128 Dec 28, 2022
Ml-design-patterns - Source code accompanying O'Reilly book: Machine Learning Design Patterns

This is not an official Google product ml-design-patterns Source code accompanying O'Reilly book: Title: Machine Learning Design Patterns Authors: Val

Google Cloud Platform 1.5k Jan 05, 2023
A Python Web Application for Checking vaccine slots by pincodes and auto slot booking.

The Dashboard is developed using Bokeh and python 3.5+. This dashboard is useful for you if you are looking for something which will help you to book the vaccine slot once slots become available. Oth

Suraj Deshmukh 10 Jan 23, 2022