Code for Emergent Translation in Multi-Agent Communication

Overview

Emergent Translation in Multi-Agent Communication

PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Communication.

We present code for training and decoding both word- and sentence-level models and baselines, as well as preprocessed datasets.

Dependencies

Python

  • Python 2.7
  • PyTorch 0.2
  • Numpy

GPU

  • CUDA (we recommend using the latest version. The version 8.0 was used in all our experiments.)

Related code

Downloading Datasets

The original corpora can be downloaded from (Bergsma500, Multi30k, MS COCO). For the preprocessed corpora see below.

Dataset
Bergsma500 Data
Multi30k Data
MS COCO Data

Before you run the code

  1. Download the datasets and place them in /data/word (Bergsma500) and /data/sentence (Multi30k and MS COCO)
  2. Set correct path in scr_path() from /scr/word/util.py and scr_path(), multi30k_reorg_path() and coco_path() from /src/sentence/util.py

Word-level Models

Running nearest neighbour baselines

$ python word/bergsma_bli.py 

Running our models

$ python word/train_word_joint.py --l1 <L1> --l2 <L2>

where <L1> and <L2> are any of {en, de, es, fr, it, nl}

Sentence-level Models

Baseline 1 : Nearest neighbour

$ python sentence/baseline_nn.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG>

Baseline 2 : NMT with neighbouring sentence pairs

$ python sentence/nmt.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG> --nn_baseline 

Baseline 3 : Nakayama and Nishida, 2017

$ python sentence/train_naka_encdec.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG> --train_enc_how <ENC_HOW> --train_dec_how <DEC_HOW>

where <ENC_HOW> is either two or three, and <DEC_HOW> is either img, des, or both.

Our models :

$ python sentence/train_seq_joint.py --dataset <DATASET> --task <TASK>

Aligned NMT :

$ python sentence/nmt.py --dataset <DATASET> --task <TASK> --src <SRC> --trg <TRG> 

where <DATASET> is multi30k or coco, and <TASK> is either 1 or 2 (only applicable for Multi30k).

Dataset & Related Code Attribution

  • Moses is licensed under LGPL, and Subword-NMT is licensed under MIT License.
  • MS COCO and Multi30k are licensed under Creative Commons.

Citation

If you find the resources in this repository useful, please consider citing:

@inproceedings{Lee:18,
  author    = {Jason Lee and Kyunghyun Cho and Jason Weston and Douwe Kiela},
  title     = {Emergent Translation in Multi-Agent Communication},
  year      = {2018},
  booktitle = {Proceedings of the International Conference on Learning Representations},
}
Owner
Facebook Research
Facebook Research
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021