Dataset and baseline code for the VocalSound dataset (ICASSP2022).

Overview

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition

Introduction

VocalSound Poster

VocalSound is a free dataset consisting of 21,024 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. The VocalSound dataset also contains meta information such as speaker age, gender, native language, country, and health condition.

This repository contains the official code of the data preparation and baseline experiment in the ICASSP paper VocalSound: A Dataset for Improving Human Vocal Sounds Recognition (Yuan Gong, Jin Yu, and James Glass; MIT & Signify). Specifically, we provide an extremely simple one-click Google Colab script Open In Colab for the baseline experiment, no GPU / local data downloading is needed.

The dataset is ideal for:

  • Build vocal sound recognizer.
  • Research on removing model bias on various speaker groups.
  • Evaluate pretrained models (e.g., those trained with AudioSet) on vocal sound classification to check their generalization ability.
  • Combine with existing large-scale general audio dataset to improve the vocal sound recognition performance.

Citing

Please cite our paper(s) if you find the VocalSound dataset and code useful. The first paper proposes introduces the VocalSound dataset and the second paper describes the training pipeline and model we used for the baseline experiment.

@INPROCEEDINGS{gong_vocalsound,
  author={Gong, Yuan and Yu, Jin and Glass, James},
  booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition}, 
  year={2022},
  pages={151-155},
  doi={10.1109/ICASSP43922.2022.9746828}}
@ARTICLE{gong_psla, 
    author={Gong, Yuan and Chung, Yu-An and Glass, James},
    title={PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation}, 
    journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},  
    year={2021}, 
    doi={10.1109/TASLP.2021.3120633}
}

Download VocalSound

The VocalSound dataset can be downloaded as a single .zip file:

Sample Recordings (Listen to it without downloading)

VocalSound 44.1kHz Version (4.5 GB)

VocalSound 16kHz Version (1.7 GB, used in our baseline experiment)

(Mirror Links) 腾讯微云下载链接: 试听24个样本16kHz版本44.1kHz版本

If you plan to reproduce our baseline experiments using our Google Colab script, you do NOT need to download it manually, our script will download and process the 16kHz version automatically.

Creative Commons License
The VocalSound dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dataset Details

data
├──readme.txt
├──class_labels_indices_vs.csv # include label code and name information
├──audio_16k
│  ├──f0003_0_cough.wav # female speaker, id=0003, 0=first collection (most spks only record once, but there are exceptions), cough
│  ├──f0003_0_laughter.wav
│  ├──f0003_0_sigh.wav
│  ├──f0003_0_sneeze.wav
│  ├──f0003_0_sniff.wav
│  ├──f0003_0_throatclearing.wav
│  ├──f0004_0_cough.wav # data from another female speaker 0004
│   ... (21024 files in total)
│   
├──audio_44k
│    # same recordings with those in data/data_16k, but are no downsampled
│   ├──f0003_0_cough.wav
│    ... (21024 files in total)
│
├──datafiles  # json datafiles that we use in our baseline experiment, you can ignore it if you don't use our training pipeline
│  ├──all.json  # all data
│  ├──te.json  # test data
│  ├──tr.json  # training data
│  ├──val.json  # validation data
│  └──subtest # subset of the test set, for fine-grained evaluation
│     ├──te_age1.json  # age [18-25]
│     ├──te_age2.json  # age [26-48]
│     ├──te_age3.json  # age [49-80]
│     ├──te_female.json
│     └──te_male.json
│
└──meta  # Meta information of the speakers [spk_id, gender, age, country, native language, health condition (no=no problem)]
   ├──all_meta.json  # all data
   ├──te_meta.json  # test data
   ├──tr_meta.json  # training data
   └──val_meta.json  # validation data

Baseline Experiment

Option 1. One-Click Google Colab Experiment Open In Colab

We provide an extremely simple one-click Google Colab script for the baseline experiment.

What you need:

  • A free google account with Google Drive free space > 5Gb
    • A (paid) Google Colab Pro plan could speed up training, but is not necessary. Free version can run the script, just a bit slower.

What you don't need:

  • Download VocalSound manually (The Colab script download it to your Google Drive automatically)
  • GPU or any other hardware (Google Colab provides free GPUs)
  • Any enviroment setting and package installation (Google Colab provides a ready-to-use environment)
  • A specific operating system (You only need a web browser, e.g., Chrome)

Please Note

  • This script is slightly different with our local code, but the performance is not impacted.
  • Free Google Colab might be slow and unstable. In our test, it takes ~5 minutes to train the model for one epoch with a free Colab account.

To run the baseline experiment

  • Make sure your Google Drive is mounted. You don't need to do it by yourself, but Google Colab will ask permission to acess your Google Drive when you run the script, please allow it if you want to use Google Drive.
  • Make sure GPU is enabled for Colab. To do so, go to the top menu > Edit > Notebook settings and select GPU as Hardware accelerator.
  • Run the script. Just press Ctrl+F9 or go to runtime menu on top and click "run all" option. That's it.

Option 2. Run Experiment Locally

We also provide a recipe for local experiments.

Compared with the Google Colab online script, it has following advantages:

  • It can be faster and more stable than online Google Colab (free version) if you have fast GPUs.
  • It is basically the original code we used for our paper, so it should reproduce the exact numbers in the paper.

Step 1. Clone or download this repository and set it as the working directory, create a virtual environment and install the dependencies.

cd vocalsound/ 
python3 -m venv venv-vs
source venv-vs/bin/activate
pip install -r requirements.txt 

Step 2. Download the VocalSound dataset and process it.

cd data/
wget https://www.dropbox.com/s/c5ace70qh1vbyzb/vs_release_16k.zip?dl=0 -O vs_release_16k.zip
unzip vs_release_16k.zip
cd ../src
python prep_data.py

# you can provide a --data_dir augment if you download the data somewhere else
# python prep_data.py --data_dir absolute_path/data

Step 3. Run the baseline experiment

chmod 777 run.sh
./run.sh

# or slurm user
#sbatch run.sh

We test both options before this release, you should get similar accuracies.

Accuracy (%) Colab Script Open In Colab Local Script ICASSP Paper
Validation Set 91.1 90.2 90.1±0.2
All Test Set 91.6 90.6 90.5±0.2
Test Age 18-25 93.4 92.3 91.5±0.3
Test Age 26-48 90.8 90.0 90.1±0.2
Test Age 49-80 92.2 90.2 90.9±1.6
Test Male 89.8 89.6 89.2±0.5
Test Female 93.4 91.6 91.9±0.1
Model Implementation torchvision EfficientNet PSLA EfficientNet PSLA EfficientNet
Batch Size 80 100 100
GPU Google Colab Free 4X Titan 4X Titan
Training Time (30 Epochs) ~2.5 Hours ~1 Hour ~1 Hour

Contact

If you have a question, please bring up an issue (preferred) or send me an email [email protected].

Owner
Yuan Gong
Postdoc, MIT CSAIL
Yuan Gong
convert-to-opus-cli is a Python CLI program for converting audio files to opus audio format.

convert-to-opus-cli convert-to-opus-cli is a Python CLI program for converting audio files to opus audio format. Installation Must have installed ffmp

4 Dec 21, 2022
C++ library for audio and music analysis, description and synthesis, including Python bindings

Essentia Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval released under the Affero GPL license.

Music Technology Group - Universitat Pompeu Fabra 2.3k Jan 03, 2023
pyo is a Python module written in C to help digital signal processing script creation.

pyo is a Python module written in C to help digital signal processing script creation.

Olivier Bélanger 1.1k Jan 01, 2023
Read music meta data and length of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python 2 or 3

tinytag tinytag is a library for reading music meta data of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python Install pip install tinytag

Tom Wallroth 577 Dec 26, 2022
Pyrogram bot to automate streaming music in voice chats

Pyrogram bot to automate streaming music in voice chats Help If you face an error, want to discuss this project or get support for it, join it's group

Roj 124 Oct 21, 2022
A simple music player, powered by Python, utilising various libraries such as Tkinter and Pygame

A simple music player, powered by Python, utilising various libraries such as Tkinter and Pygame

PotentialCoding 2 May 12, 2022
An Amazon Music client for Linux (unpretentious)

Amusiz An Amazon Music client for Linux (unpretentious) ↗️ Install You can install Amusiz in multiple ways, choose your favorite. 🚀 AppImage Here you

Mirko Brombin 25 Nov 08, 2022
Algorithmic Multi-Instrumental MIDI Continuation Implementation

Matchmaker Algorithmic Multi-Instrumental MIDI Continuation Implementation Taming large-scale MIDI datasets with algorithms This is a WIP so please ch

Alex 2 Mar 11, 2022
Stream Music 🎵 𝘼 𝙗𝙤𝙩 𝙩𝙝𝙖𝙩 𝙘𝙖𝙣 𝙥𝙡𝙖𝙮 𝙢𝙪𝙨𝙞𝙘 𝙤𝙣 𝙏𝙚𝙡𝙚𝙜𝙧𝙖𝙢 𝙂𝙧𝙤𝙪𝙥 𝙖𝙣𝙙 𝘾𝙝𝙖𝙣𝙣𝙚𝙡 𝙑𝙤𝙞𝙘𝙚 𝘾𝙝𝙖𝙩𝙨 𝘼𝙫𝙖𝙞𝙡?

Stream Music 🎵 𝘼 𝙗𝙤𝙩 𝙩𝙝𝙖𝙩 𝙘𝙖𝙣 𝙥𝙡𝙖𝙮 𝙢𝙪𝙨𝙞𝙘 𝙤𝙣 𝙏𝙚𝙡𝙚𝙜𝙧𝙖𝙢 𝙂𝙧𝙤𝙪𝙥 𝙖𝙣𝙙 𝘾𝙝𝙖𝙣𝙣𝙚𝙡 𝙑𝙤𝙞𝙘𝙚 𝘾𝙝𝙖𝙩𝙨 𝘼𝙫𝙖𝙞𝙡?

Sadew Jayasekara 15 Nov 12, 2022
Tune in is a Collaborative Music Playing Systems where multiple guests can join a room and enjoy the song being played

✨A collaborative music playing systems🎶 where multiple guests can join a room ➡🚪 and enjoy the song🎧 being played.

Vedansh Vijaywargiya 8 Nov 05, 2022
DaisyXmusic ❤ A bot that can play music on Telegram Group and Channel Voice Chats

DaisyXmusic ❤ is the best and only Telegram VC player with playlists, Multi Playback, Channel play and more

TeamOfDaisyX 34 Oct 22, 2022
Mentos Music Bot With Python

Mentos Music Bot For Any Query Join Our Support Group 👥 Special Thanks - @OfficialYukki Hey Welcome To Here 💫 💫 You Can Make Your Own Music Bot Fo

Cyber Toxic 13 Oct 21, 2022
Python implementation of the Short Term Objective Intelligibility measure

Python implementation of STOI Implementation of the classical and extended Short Term Objective Intelligibility measures Intelligibility measure which

Pariente Manuel 250 Dec 21, 2022
A python script that can play .mp3 URLs upon the ringing or motion detection of a Ring doorbell. The sound plays through Sonos speakers.

Ring x Sonos A python script that plays .mp3 files whenever a doorbell is rung or a doorbell detects motion. Features Music! Authors @braden Running T

braden 0 Nov 12, 2021
A Python 3 script for capturing and recording a SDR stream to a WAV file (or serving it to a HTTP audio stream).

rfsoapyfile A Python 3 script for capturing and recording a SDR stream to a WAV file (or serving it to a HTTP audio stream). The script is threaded fo

4 Dec 19, 2022
We built this fully functioning Music player in Python. The music player allows you to play/pause and switch to different songs easily.

We built this fully functioning Music player in Python. The music player allows you to play/pause and switch to different songs easily.

1 Nov 19, 2021
Stevan KZ 1 Oct 27, 2021
Real-time audio visualizations (spectrum, spectrogram, etc.)

Friture Friture is an application to visualize and analyze live audio data in real-time. Friture displays audio data in several widgets, such as a sco

Timothée Lecomte 700 Dec 31, 2022
Open-Source Tools & Data for Music Source Separation: A Pragmatic Guide for the MIR Practitioner

Open-Source Tools & Data for Music Source Separation: A Pragmatic Guide for the MIR Practitioner

IELab@ Korea University 0 Nov 12, 2021
music library manager and MusicBrainz tagger

beets Beets is the media library management system for obsessive music geeks. The purpose of beets is to get your music collection right once and for

beetbox 11.3k Dec 31, 2022