Toolkit for collecting and applying templates of prompting instances

Overview

PromptSource

Toolkit for collecting and applying templates of prompting instances.

WIP

Setup

  1. Download the repo
  2. Navigate to root directory of the repo
  3. Install requirements with pip install -r requirements.txt

Running

From the root directory of the repo, you can launch the editor with

streamlit run promptsource/promptsource.py

Writing Templates

A prompt template is expressed in Jinja.

It is rendered using an example from the corresponding Hugging Face datasets library (a dictionary). The separator ||| should appear once to divide the template into prompt and output. Generally, the prompt should provide information on the desired behavior, e.g., text passage and instructions, and the output should be a desired response.

Here's an example for AG News:

{{text}}
Is this a piece of news regarding world politics, sports, business, or technology? |||
{{ ["World politics", "Sport", "Business", "Technology"][label] }}

Contributing

This is very much a work in progress, and help is needed and appreciated. Anyone wishing to contribute code can contact Steve Bach for commit access, or submit PRs from forks. Some particular places you could start:

  1. Try to express things! Explore a dataset and tell us what's hard to do to create templates you want
  2. Look in the literature. Are there prompt creation methods that do/do not fit well right now?
  3. Scalability testing. Streamlit is lightweight, and we're reading and writing all prompts on refresh.

See also the design doc.

Before submitting a PR or pushing a new commit, please run style formattings and quality checks so that your newly added file look nice:

make style
make quality

Known Issues

Warning or Error about Darwin on OS X: Try downgrading PyArrow to 3.0.0.

Comments
  • Bias/fairness quantitative measurements

    Bias/fairness quantitative measurements

    Two goals:

    • have quantitative measurements for the paper's Broader impact section
    • reflect these in the model cards when we release checkpoints

    4 held out evaluation sets identified by the Evaluation WG:

    • jigsaw_toxicity_pred
    • crows_pairs
    • winogender (AXG in SuperGLUE)
    • winobias

    At the current state, I see crows_pairs and winobias prompted, jigsaw_toxicity_pred has an opened PR (#451) we need to check, winogender needs to be prompted.

    Workflow:

    • [x] prompt those that were not prompted yet
    • [x] making sure these were actually cached (@VictorSanh can have this caching step done fairly quickly)
    • [x] evaluation (normal and score rank evaluation) or maybe they have some special evaluation?
    • [x] when we know which checkpoints exactly to eval, get the final numbers to report
    opened by VictorSanh 22
  • remove language restrictions in tydiqa + add arabic prompts

    remove language restrictions in tydiqa + add arabic prompts

    • [x] Remove the if statement to allow English prompts to work across the Dataset.
    • [x] Add Arabic prompts for primary task subset with if statement to include only Arabic set.
    • [x] Add Arabic prompts for secondary task subset.
    opened by KhalidAlt 21
  • Tracking trainings and evals

    Tracking trainings and evals

    Main runs

    • D4 only (finetune-t5-xxl-lm-d4-091621-512)
      • [x] Training
      • [x] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'200 (half fine-tuning) (cf #456)
          • [x] Normal
          • [x] Rank
        • [x] 1'124'700 (second to last checkpoint)
          • [x] Normal
          • [x] Rank
      • [ ] SuperGLUE test (1380485) - RUNNING
      • [x] BigBench - see #469
    • D4 + GPT (finetune-t5-xxl-lm-d4-gpt-091621/)
      • [x] Training
      • [x] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'200 (half fine-tuning)
          • [x] Normal
          • [x] Rank
      • [x] BigBench - see #469 - RUNNING
    • D4 + GPT + Sglue (finetune-t5-xxl-lm-d4-all-091621)
      • [X] Training
      • [X] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [x] Normal
          • [x] Rank
      • [x] BigBench - see #469 - RUNNING

    Ablations

    • Nb Template - 1 OG Template (finetune-t5-xxl-lm-d4-og-091621)
      • [X] Training
      • [X] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [x] Normal
          • [x] Rank
    • all OG Templates (finetune-t5-xxl-lm-d4-og-all-091621) #465
      • [x] Training - RUNNING
      • [ ] Eval
        • [ ] Last
          • [ ] Normal
          • [ ] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [ ] Normal ``
          • [x] Rank ``
    • Size XL (finetune-t5-xl-lm-d4-091621)
      • [X] Training
      • [X] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [x] Normal
          • [x] Rank
    • D4 only duplicate (finetune-t5-xxl-lm-d4-091621/)
      • [x] Training
      • [ ] Eval
        • [ ] Last
          • [ ] Normal
          • [ ] Rank
        • [X] 1'112'000 (half fine-tuning)
          • [X] Normal
          • [X] Rank

    Baseline

    • T5 zero-shot baseline
      • [x] Eval - RUNNING under finetune-t5-xxl-lm-d4-091621
        • [x] Normal 1384362 - RUNNING
        • [x] Rank 1384360 - RUNNING
    opened by VictorSanh 18
  • Special eval metrics and scripts

    Special eval metrics and scripts

    Since we have the string outputs of all tasks, in principal we should be able to run arbitrary metrics, especially for datasets require fancy [email protected] has imported the official eval scripts for ReCoRD, SQuAD v2, Natural Questions, TriviaQA, and DROP.

    Update: Even when using Lintang's eval scripts, all extractive QAs and closed-book (generative) QAs still have abnormally low numbers, namely:

    • [ ] ReCoRD
    • [x] SQuAD2 (contains unanswerables)
    • [x] DROP
    • [ ] CoQA (contains unanswerables, multiple questions per example)
    • [ ] Quac (contains unanswerables, multiple questions per example)
    • [ ] Natural Questions
    • [x] TriviaQA
    • [x] WebQuestions

    Also, I think all eval of extractive QA from the training mixture also failed.

    (Note that ARC is closed-book, but its performance is fine because it's multiple-choice. A great point in case that machine task categories care more about format way more than human skill/knowledge.)

    Others with issues to keep an eye on:

    • [x] HellaSwag
    • [x] Lambada
    • [x] Winogrande
    evaluations 
    opened by awebson 14
  • Fix rendering: use simple `st.text` instead of `st.markdown`

    Fix rendering: use simple `st.text` instead of `st.markdown`

    The rendering is messed up in a bunch of places. A few issues that are symptomatic: #355 #326

    Replace st.markdown by st.text and extensively test that the rendering is better.

    opened by VictorSanh 13
  • Templates for `ncbi_disease`

    Templates for `ncbi_disease`

    This one compared to the others has been a real pain, but I think the templates are quite interesting. Not sure the Jinja style is top notch, but it seems functional on the example sets I checked.

    opened by drugilsberg 12
  • Creating unique identifier in the template.yaml

    Creating unique identifier in the template.yaml

    For now, it looks like we can sort of uniquely identify each template using a combination of template name and dataset name, but I'm expecting potential collisions when a lot of people start contributing. Besides, naming each template might not be useful (like if we end up with names like template1 template2 etc...), and it would help contributors if they don't have to add a name/check conflicts on the naming part before merging their template.yaml.

    I was thinking that we could add an ID to each entry by getting the hash of timestamp + dataset + string of prompt python function or jinja template? That should be more than enough to prevent collisions

    enhancement 
    opened by arnaudstiegler 12
  • Add prompts for DiaBLa dataset

    Add prompts for DiaBLa dataset

    Added a range of prompts for different tasks:

    • sentence-level translation
    • analogy-based translation
    • contextual translation (with context in different languages, automatically vs. manually translated)
    • detection of errors in translations
    • identification of machine translated output compared to human-produced translations
    opened by rbawden 11
  • AttributeError: 'NoneType' object has no attribute 'session_id'

    AttributeError: 'NoneType' object has no attribute 'session_id'

    Hi,

    Is anyone facing this issue while running streamlit run promptsource/app.py ?

    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 105, in spawn_main
        exitcode = _main(fd)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 114, in _main
        prepare(preparation_data)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 225, in prepare
        _fixup_main_from_path(data['init_main_from_path'])
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
        run_name="__mp_main__")
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\runpy.py", line 263, in run_path
        pkg_name=pkg_name, script_name=fname)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\runpy.py", line 96, in _run_module_code
        mod_name, mod_spec, pkg_name, script_name)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "C:\Users\I355109\promptsource\promptsource\app.py", line 59, in <module>
        state = _get_state()
      File "c:\users\i355109\promptsource\promptsource\session.py", line 84, in _get_state
        session = _get_session()
      File "c:\users\i355109\promptsource\promptsource\session.py", line 74, in _get_session
        session_id = get_report_ctx().session_id
    AttributeError: 'NoneType' object has no attribute 'session_id'
    
    opened by manandey 11
  • Add conll2003 ner,pos,chunk task.

    Add conll2003 ner,pos,chunk task.

    Prompt Description:

    1. flat_question_with_label : Regular task. Label are normalized label in-case of POS tagging.
    2. flat_question_with_random_label : It is not expected that user will always provide labels strictly from the dataset. They may provide a subset of labels. So here we provided subset of labels. If the gold labels in the sample are not available in the subset we replace the gold label with "O". In case of choosing random tags, We always include "O" tag for ner, pos and chunk labels.
    3. flat_question_without_label : Regular task. No label is provided.

    POS label Normalization

    Both NER and Chunk task contains "O" tags. But POS doesn't contain "O" tag.

    In case of parts-of-speech tags, there are few labels that are weird in natural sense. For example see a prompt with all pos labels,

    Generate parts of speech from the following sentence. The parts of speech tags are ", '', #, $, (, ), ,, ., :, ``, CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, LS, MD, NN, NNP, NNPS, NNS, NN|SYM, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB
    

    Here first 9 labels are normalized to "O" tag.

    Earlier Pull

    Earlier zip was not available so I wrote the a brute force code in O(n^2) complexity. But now that zip is available, I wrote the code with simpler notation and loop (with O(n) complexity). While merging I messed up in previous pull https://github.com/bigscience-workshop/promptsource/pull/170 . So I closed that and created the new pull.

    opened by sbmaruf 11
  • Some tweaks to the Editor

    Some tweaks to the Editor

    • Default sort by popularity and include number of prompts

    image

    • Global progress table

    image

    • Separated out new prompts and select, and the columns (I think this is okay, but might break)

    image

    • Added text wrapping so that you can view long prompts

    • Added a template viewer section

    image

    opened by srush 11
  • Merging xP3 & eval-hackathon

    Merging xP3 & eval-hackathon

    I would like to get all xP3 prompts merged into eval-hackathon & then have eval-hackathon be merged into main once & for all, but I'm not sure if you want that? cc @VictorSanh @stephenbach

    It would include adding:

    • Normal english prompts for various new & existing datasets (many PRs already open - will clean them up & request reviews when ready if someone gives me rights to do so / merge if i can & tests pass)
    • Long prompts https://github.com/bigscience-workshop/promptsource/pull/823/files ; Would request reviews once ready
    • Human-translated & Machine-translated prompts (Always suffixed with ht or mt, roughly 20K lines; see https://github.com/Muennighoff/promptsource/pull/47/files)

    Lmk if you're okay with that & I'll get started 🙂

    opened by Muennighoff 0
  • Regenerate all templates in unicode

    Regenerate all templates in unicode

    @KhalidAlt made a great suggestion to change

    yaml.dump(self.format_for_dump(), open(self.yaml_path, "w"))
    

    to

    yaml.dump(self.format_for_dump(), open(self.yaml_path, "w"), allow_unicode=True)
    

    in templates.py so that the yaml files display as unicode (rather than the unicode code points). We should definitely do this, but we should do it when the corpus is relatively stable and we can regenerate (read and write) all the yaml as one commit.

    opened by stephenbach 0
  • fix fields names for TREC after

    fix fields names for TREC after

    changes were induced here https://huggingface.co/datasets/trec/commit/1f97567bdd2adedefe8abdaa9bd6ee0e6725b458 to the field names (coarse_label and fine_label)

    opened by VictorSanh 0
Releases(v0.2.3)
Owner
BigScience Workshop
Research workshop on large language models - The Summer of Language Models 21
BigScience Workshop
UUID version 7, which are time-sortable (following the Peabody RFC4122 draft)

uuid7 - time-sortable UUIDs This module implements the version 7 UUIDs, proposed by Peabody and Davis in https://www.ietf.org/id/draft-peabody-dispatc

Steve Simmons 22 Dec 20, 2022
SmarTool - Smart Util Tool for Python

A set of tools that keep Python sweeter.

Liu Tao 9 Sep 30, 2022
Dynamic key remapper for Wayland Window System, especially for Sway

wayremap Dynamic keyboard remapper for Wayland. It works on both X Window Manager and Wayland, but focused on Wayland as it intercepts evdev input and

Kay Gosho 50 Nov 29, 2022
A program will generate a eth key pair that has the public key that starts with a defined amount of 0

ETHAdressGenerator This short program will generate a eth key pair that has the public key that starts with a defined amount of 0 Requirements Python

3 Nov 19, 2021
Python script to get some stats on nodes in a Blender material nodetree

Python script to get some stats on nodes in a Blender material nodetree. It counts the nodes, the node types and the max deep level for group nodes.

Alek Mugnozzo 2 Sep 03, 2022
Writing Alfred copy/paste scripts in Python

Writing Alfred copy/paste scripts in Python This repository shows how to create Alfred scripts in Python. It assumes that you using pyenv for Python v

Will Fitzgerald 2 Oct 26, 2021
A Python package implementing various colour checker detection algorithms and related utilities.

A Python package implementing various colour checker detection algorithms and related utilities.

colour-science 147 Dec 29, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders Getting Started Install requirements with Anaconda: conda env c

T. Andy Keller 4 Aug 22, 2022
A simple package for handling variables in string.

A simple package for handling string variables. Welcome! This is a simple package for handling variables in string, You can add or remove variables wi

1 Dec 31, 2021
Python HTTP Agent Parser

Features Fast Detects OS and Browser. Does not aim to be a full featured agent parser Will not turn into django-httpagentparser ;) Usage import ht

Shekhar 213 Dec 06, 2022
An okayish python script to generate a random Euler circuit with given number of vertices and edges.

Euler-Circuit-Test-Case-Generator An okayish python script to generate a random Euler circuit with given number of vertices and edges. Executing the S

Alen Antony 1 Nov 13, 2021
A way to write regex with objects instead of strings.

Py Idiomatic Regex (AKA iregex) Documentation Available Here An easier way to write regex in Python using OOP instead of strings. Makes the code much

Ryan Peach 18 Nov 15, 2021
Automatic generator of readmes for git repositories (Includes file' listing)

Readme Generator We are bored of write the same things once and once again. We trust in the comments made inside of our files, and we decided to autom

Natalia Vera Duran 6 Jul 20, 2021
Allows you to canibalize methods from classes effectively implementing trait-oriented programming

About This package enables code reuse in non-inheritance way from existing classes, effectively implementing traits-oriented programming pattern. Stor

1 Dec 13, 2021
This script allows you to retrieve all functions / variables names of a Python code, and the variables values.

Memory Extractor This script allows you to retrieve all functions / variables names of a Python code, and the variables values. How to use it ? The si

Venax 2 Dec 26, 2021
A small python tool to get relevant values from SRI invoices

SriInvoiceProcessing A small python tool to get relevant values from SRI invoices Some useful info to run the tool Login into your SRI account and ret

Wladymir Brborich 2 Jan 07, 2022
Python utility for discovering interesting CFPreferences values on iDevices

Description Simple utility to search for interesting preferences in iDevices. Installation python3 -m pip install -U --user cfprefsmon Example In this

12 Aug 19, 2022
API Rate Limit Decorator

ratelimit APIs are a very common way to interact with web services. As the need to consume data grows, so does the number of API calls necessary to re

Tomas Basham 575 Jan 05, 2023
Python program for Linux users to change any url to any domain name they want.

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

2 Jun 20, 2022
Hot reloading for Python

Hot reloading for Python

Olivier Breuleux 769 Jan 03, 2023