EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Overview

Pre-train or Annotate? Domain Adaptation with a Constrained Budget

This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

@inproceedings{bai-etal-2021-pre,
    title = "Pre-train or Annotate? Domain Adaptation with a Constrained Budget",
    author = "Bai, Fan  and
              Ritter, Alan  and
              Xu, Wei",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}

Installment

git clone https://github.com/bflashcp3f/ProcBERT.git
cd ProcBERT
conda env create -f environment.yml
conda activate procbert

Data & Model Checkpoints

Three procedural-text datasets (WLP, PubMed and ChemSyn) can be downloaded here, and model checkpoints (ProcBERT and Proc-RoBERTa) are accessible through HuggingFace.

Experiment

Setup

# After downloading the data, update the DATA_PATH variable in code/utils.py
DATA_PATH=<DATA_PATH>

Budget-aware Domain Adaptation Experiments (with EasyAdapt)

# Named Entity Recognition (NER) 
python code/ner_da_budget.py     \
  --lm_model procbert     \
  --src_data pubmed     \
  --tgt_data chemsyn     \
  --gpu_ids 0,1   \
  --output_dir ./output/da/pubmed_chemsyn     \
  --learning_rate 1e-5     \
  --task_name fa_ner     \
  --batch_size 16     \
  --max_len 512    \
  --epochs 25 \
  --budget 700 \
  --alpha 1   \
  --save_model

# Relation Extraction (RE)
python code/rel_da_budget.py \
  --lm_model procbert \
  --src_data pubmed     \
  --tgt_data chemsyn     \
  --gpu_ids 0,1  \
  --output_dir ./output/da/pubmed_chemsyn \
  --learning_rate 1e-5 \
  --task_name fa_rel \
  --batch_size 48 \
  --max_len 256 \
  --epochs 5 \
  --budget 700 \
  --alpha 1 \
  --down_sample \
  --down_sample_rate 0.4 \
  --save_model

To obtain ProcBERT results with different budgets under six domain adaptation settings:

# NER
sh script/ner/run_ner_da_budget_all.sh

# RE
sh script/rel/run_rel_da_budget_all.sh

Budget-aware Target-domain-only Experiments

# Named Entity Recognition (NER) 
python code/ner_budget.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name ner \
  --batch_size 16 \
  --max_len 512 \
  --epochs 25 \
  --budget 700 \
  --save_model

# Relation Extraction (RE)
python code/rel_budget.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name rel \
  --batch_size 48 \
  --max_len 256 \
  --epochs 5 \
  --budget 700 \
  --down_sample \
  --down_sample_rate 0.4 \
  --save_model

To obtain ProcBERT results with different budgets on three datasets:

# NER
sh script/ner/run_ner_budget_all.sh

# RE
sh script/rel/run_rel_budget_all.sh

Auxiliary Experiments

# Named Entity Recognition (NER) 
python code/ner.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name ner \
  --batch_size 16 \
  --max_len 512 \
  --epochs 20 \
  --save_model

# Relation Extraction (RE)
python code/rel.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name rel \
  --batch_size 48 \
  --max_len 256 \
  --epochs 5 \
  --down_sample \
  --down_sample_rate 0.4 \
  --save_model

To obtain ProcBERT results on all three datasets:

# NER
sh script/ner/run_ner_all.sh

# RE
sh script/rel/run_rel_all.sh
Owner
Fan Bai
Fan Bai
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022