Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Overview

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations

Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop Shared Visual Representations in Human and Machine Intelligence (SVRHM). OpenReviews

Is it possible that human learn their visual representations with a self-supervised learning framework similar to the machines? Popular self-supervised learning framework encourages the model to learn similar representations invariant to the augmentations of the images. Is it possible to learn good visual representation using the natural "image augmentations" available to our human visual system?

In this project, we reverse-engineered the key data augmentations that support the learned representation quality , namely random resized crop and blur. We hypothesized that saccade and foveation in our visual processes, is the equivalence of random crops and blur. We implement these biological plausible transformation of images and test if they could confer the same representation quality as those engineered ones.

Our experimental pipeline is based on the pytorch SimCLR implemented by sthalles and by Spijkervet. Our development supports our biologically inspired data augmentations, visualization and post hoc data analysis.

Usage

Colab Tutorials

  • Open In Colab Tutorial: Demo of Biological transformations
  • Open In Colab Tutorial: Augmentation pipeline applied to the STL10 dataset
  • Open In Colab Tutorial: Demo of Training STL10
  • Open In Colab Tutorial: Sample training and evaluation curves.

Local Testing

For running a quick demo of training, replace the $Datasets_path with the parent folder of stl10_binary (e.g. .\Datasets). You could download and extract STL10 from here. Replace $logdir with the folder to save all running logs and checkpoints, then you can use tensorboard --logdir $logdir to view the training process.

python run_magnif.py -data $Datasets_path -dataset-name stl10 --workers 16 --log_root $logdir\
	--ckpt_every_n_epocs 5 --epochs 100  --batch-size 256  --out_dim 256  \
	--run_label proj256_eval_magnif_cvr_0_05-0_35 --magnif \
	--cover_ratio 0.05 0.35  --fov_size 20  --K  20  --sampling_bdr 16 

Code has been tested on Ubuntu and Windows10 system.

Cluster Testing

For running in docker / on cluster, we used the following pytorch docker image pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9. For settings for LSF Spectrum cluster, you can refer to scripts. These jobs are submitted via bsub < $name_of_script

To support multi-worker data-preprocessing, export LSF_DOCKER_SHM_SIZE=16g need to be set beforehand. Here is the example script for setting up an interactive environment to test out the code.

export LSF_DOCKER_SHM_SIZE=16g 
bsub -Is -M 32GB -q general-interactive -R 'gpuhost' -R  'rusage[mem=32GB]'  -gpu "num=1:gmodel=TeslaV100_SXM2_32GB" -a 'docker(pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.9)' /bin/bash

Multi-GPU training has not been tested.

Implementation

We implemented foveation in two ways: one approximating our perception, the other approximating the cortical representation of the image. In our perception, we can see with highest resolution at the fixation point, while the peripheral vision is blurred and less details could be recognized (Arturo; Simoncelli 2011). Moreover, when we change fixation across the image, the whole scene still feels stable without shifting. So we model this perception as a spatially varying blur of image as people classically did.

In contrast, from a neurobiological view, our visual cortex distorted the retinal input: a larger cortical area processes the input at fovea than that for periphery given the same image size. This is known as the cortical magnification. Pictorially, this is magnifying and over-representing the image around the fixation points. We model this transform with sampling the original image with a warpped grid.

These two different views of foveation (perceptual vs neurobiological) were implemented and compared as data augmentations in SimCLR.

Structure of Repo

  • Main command line interface
    • run.py Running baseline training pipeline without bio-inspired augmentations.
    • run_salcrop.py Running training pipeline with options for foveation transforms and saliency based sampling.
    • run_magnif.py Running training pipeline with options for foveation transforms and saliency based sampling.
  • data_aug\, implementation of our bio-inspired augmentations
  • posthoc\, analysis code for training result.
  • scripts\, scripts that run experiments on cluster.

Dependency

  • pytorch. Tested with version 1.7.1-1.10.0
  • kornia pip install kornia. Tested with version 0.3.1-0.6.1.
  • FastSal, we forked and modified a few lines of original to make it compatible with current pytorch 3.9 and torchvision.

Inquiries: [email protected]

Owner
Binxu
PhD student in System Neuro @PonceLab @Harvard, using generative models, CNN and optimization to understand brain Previously: Louis Tao
Binxu
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022