A lightweight yet powerful audio-to-MIDI converter with pitch bend detection

Overview

Basic Pitch Logo

License PyPI - Python Version Supported Platforms

Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence Lab. It's small, easy-to-use, and pip install-able.

Basic Pitch may be simple, but it's is far from "basic"! basic-pitch is efficient and easy to use, and its multipitch support, its ability to generalize across instruments, and its note accuracy competes with much larger and more resource-hungry AMT systems.

Provide a compatible audio file and basic-pitch will generate a MIDI file, complete with pitch bends. Basic pitch is instrument-agnostic and supports polyphonic instruments, so you can freely enjoy transcription of all your favorite music, no matter what instrument is used. Basic pitch works best on one instrument at a time.

Research Paper

This library was released in conjunction with Spotify's publication at ICASSP 2022. You can read more about this research in the paper, A Lightweight Instrument-Agnostic Model for Polyphonic Note Transcription and Multipitch Estimation.

If you use this library in academic research, consider citing it:

@inproceedings{2022_BittnerBRME_LightweightNoteTranscription_ICASSP,
  author= {Bittner, Rachel M. and Bosch, Juan Jos\'e and Rubinstein, David and Meseguer-Brocal, Gabriel and Ewert, Sebastian},
  title= {A Lightweight Instrument-Agnostic Model for Polyphonic Note Transcription and Multipitch Estimation},
  booktitle= {Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)},
  address= {Singapore},
  year= 2022,
}

Demo

If, for whatever reason, you're not yet completely inspired, or you're just like so totally over the general vibe and stuff, checkout our snappy demo website, basicpitch.io, to experiment with our model on whatever music audio you provide!

Installation

basic-pitch is available via PyPI. To install the current release:

pip install basic-pitch

To update Basic Pitch to the latest version, add --upgrade to the above command.

Compatible Environments:

  • MacOS, Windows and Ubuntu operating systems
  • Python versions 3.7, 3.8, 3.9

Usage

Model Prediction

Command Line Tool

This library offers a command line tool interface. A basic prediction command will generate and save a MIDI file transcription of audio at the <input-audio-path> to the <output-directory>:

basic-pitch <output-directory> <input-audio-path>

To process more than one audio file at a time:

basic-pitch <output-directory> <input-audio-path-1> <input-audio-path-2> <input-audio-path-3>

Optionally, you may append any of the following flags to your prediction command to save additional formats of the prediction output to the <output-directory>:

  • --sonify-midi to additionally save a .wav audio rendering of the MIDI file
  • --save-model-outputs to additionally save raw model outputs as an NPZ file
  • --save-note-events to additionally save the predicted note events as a CSV file

To discover more parameter control, run:

basic-pitch --help

Programmatic

predict()

Import basic-pitch into your own Python code and run the predict functions directly, providing an <input-audio-path> and returning the model's prediction results:

from basic_pitch.inference import predict
from basic_pitch import ICASSP_2022_MODEL_PATH

model_output, midi_data, note_activations = predict(<input-audio-path>)
  • <minimum-frequency> & <maximum-frequency> (floats) set the maximum and minimum allowed note frequency, in Hz, returned by the model. Pitch events with frequencies outside of this range will be excluded from the prediction results.
  • model_output is the raw model inference output
  • midi_data is the transcribed MIDI data derived from the model_output
  • note_events is a list of note events derived from the model_output

predict() in a loop

To run prediction within a loop, you'll want to load the model yourself and provide predict() with the loaded model object itself to be used for repeated prediction calls, in order to avoid redundant and sluggish model loading.

import tensorflow as tf

from basic_pitch.inference import predict
from basic_pitch import ICASSP_2022_MODEL_PATH

basic_pitch_model = tf.saved_model.load(str(ICASSP_2022_MODEL_PATH))

for x in range():
    ...
    model_output, midi_data, note_activations = predict(
        <loop-x-input-audio-path>,
        basic_pitch_model,
    )
    ...

predict_and_save()

If you would like basic-pitch orchestrate the generation and saving of our various supported output file types, you may use predict_and_save instead of using predict directly:

from basic_pitch.inference import predict_and_save

predict_and_save(
    <input-audio-path-list>,
    <output-directory>,
    <save-midi>,
    <sonify-midi>,
    <save-model-outputs>,
    <save-note-events>,
)

where:

  • <input-audio-path-list> & <output-directory>
    • directory paths for basic-pitch to read from/write to.
  • <save-midi>
    • bool to control generating and saving a MIDI file to the <output-directory>
  • <sonify-midi>
    • bool to control saving a WAV audio rendering of the MIDI file to the <output-directory>
  • <save-model-outputs>
    • bool to control saving the raw model output as a NPZ file to the <output-directory>
  • <save-note-events>
    • bool to control saving predicted note events as a CSV file <output-directory>

Model Input

Supported Audio Codecs

basic-pitch accepts all sound files that are compatible with its version of librosa, including:

  • .mp3
  • .ogg
  • .wav
  • .flac
  • .m4a

Mono Channel Audio Only

While you may use stereo audio as an input to our model, at prediction time, the channels of the input will be down-mixed to mono, and then analyzed and transcribed.

File Size/Audio Length

This model can process any size or length of audio, but processing of larger/longer audio files could be limited by your machine's available disk space. To process these files, we recommend streaming the audio of the file, processing windows of audio at a time.

Sample Rate

Input audio maybe be of any sample rate, however, all audio will be resampled to 22050 Hz before processing.

Contributing

Contributions to basic-pitch are welcomed! See CONTRIBUTING.md for details.

Copyright and License

basic-pitch is Copyright 2022 Spotify AB.

This software is licensed under the Apache License, Version 2.0 (the "Apache License"). You may choose either license to govern your use of this software only upon the condition that you accept all of the terms of either the Apache License.

You may obtain a copy of the Apache License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Apache License or the GPL License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the Apache License for the specific language governing permissions and limitations under the Apache License.

A python script that can play .mp3 URLs upon the ringing or motion detection of a Ring doorbell. The sound plays through Sonos speakers.

Ring x Sonos A python script that plays .mp3 files whenever a doorbell is rung or a doorbell detects motion. Features Music! Authors @braden Running T

braden 0 Nov 12, 2021
XA Music Player - Telegram Music Bot

XA Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) MongoDB (3.12.1) 2nd Telegram Ac

RexAshh 3 Jun 30, 2022
Vixtify - Python Controlled Music Player

Strumm Sound Playlist : Click me to listen Welcome to GitHub Pages You can use the editor on GitHub to maintain and preview the content for your websi

Vicky Kumar 2 Feb 03, 2022
Read music meta data and length of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python 2 or 3

tinytag tinytag is a library for reading music meta data of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python Install pip install tinytag

Tom Wallroth 577 Dec 26, 2022
A bot that can play music on Telegram Group and Channel Voice Chats

DaisyXmusic ❤ is the best and only Telegram VC player with playlists, Multi Playback, Channel play and more

TeamOfDaisyX 20 Jun 11, 2021
python wrapper for rubberband

pyrubberband A python wrapper for rubberband. For now, this just provides lightweight wrappers for pitch-shifting and time-stretching. All processing

Brian McFee 106 Nov 28, 2022
Okaeri-Music is a telegram music bot project, allow you to play music on voice chat group telegram.

🗄️ PROJECT MUSIC,THIS IS MAINTAINED Okaeri-Music is a telegram bot project that's allow you to play music on telegram voice chat group Features 🔥 Th

Okaeri-Project 2 Dec 23, 2021
Klangbecken: The RaBe Endless Music Player

Klangbecken Klangbecken is the minimalistic endless music player for Radio Bern RaBe based on liquidsoap. It supports configurable and editable playli

Radio Bern RaBe 8 Oct 09, 2021
Accompanying code for our paper "Point Cloud Audio Processing"

Point Cloud Audio Processing Krishna Subramani1, Paris Smaragdis1 1UIUC Paper For the necessary libraries/prerequisites, please use conda/anaconda to

Krishna Subramani 17 Nov 17, 2022
Minimal command-line music player written in Python

pyms Minimal command-line music player written in Python. Designed with elegance and minimalism. Resizes dynamically with your terminal. Dependencies

12 Sep 23, 2022
A python program to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks.

I'm writing a python script to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks called ReCut. So far there are two

Dönerspiess 1 Oct 27, 2021
The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases.

The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases. The cross-section of the throat is less than the cross-section of the inlet pi

Shankar Mahadevan L 1 Dec 03, 2021
Codes for "Efficient Long-Range Attention Network for Image Super-resolution"

ELAN Codes for "Efficient Long-Range Attention Network for Image Super-resolution", arxiv link. Dependencies & Installation Please refer to the follow

xindong zhang 124 Dec 22, 2022
LibXtract is a simple, portable, lightweight library of audio feature extraction functions.

LibXtract LibXtract is a simple, portable, lightweight library of audio feature extraction functions. The purpose of the library is to provide a relat

Jamie Bullock 215 Nov 16, 2022
Gammatone-based spectrograms, using gammatone filterbanks or Fourier transform weightings.

Gammatone Filterbank Toolkit Utilities for analysing sound using perceptual models of human hearing. Jason Heeris, 2013 Summary This is a port of Malc

Jason Heeris 188 Dec 14, 2022
A voice control utility for Spotify

Spotify Voice Control A voice control utility for Spotify · Report Bug · Request

Shoubhit Dash 27 Jan 01, 2023
Pythonic bindings for FFmpeg's libraries.

PyAV PyAV is a Pythonic binding for the FFmpeg libraries. We aim to provide all of the power and control of the underlying library, but manage the gri

PyAV 1.8k Jan 03, 2023
Music generation using ml / dl

Data analysis Document here the project: deep_music Description: Project Description Data Source: Type of analysis: Please document the project the be

0 Jul 03, 2022
Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Y-Net Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021 Project page: ipcv.github.io

Juan F. Montesinos 12 Oct 22, 2022
Desktop music recognition application for windows

MusicRecognizer Music recognition application for windows You can choose from which of the devices the recording will be made. If you choose speakers,

Nikita Merzlyakov 28 Dec 13, 2022