Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane.

Overview

Xanadu Quantum Codebook

The Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane. This repository contains all the source text and coding challenge templates in the Codebook; the Codebook itself is available at codebook.xanadu.ai.

Providing feedback and getting help

The Codebook is currently in the beta stage of development. If you find an error in the Codebook, something is not working as expected, or have other technical feedback, please open an issue in this repository.

If you are stuck on a coding exercise, or have questions about the content and material, please post a question on the PennyLane discussion forum under the "Codebook" category.

Codebook team

The Xanadu Quantum Codebook was written, developed, and reviewed by members of the Xanadu team. The current contents are the work of the following people:

Catalina Albornoz, Guillermo Alonso, Mikhail Andrenkov, Priya Angara*, Ali Asadi, Álvaro Ballon, Sanchit Bapat, Olivia Di Matteo, Paul Finlay, Alberto Fumagalli, Andrew Gardhouse, Natalie Girard, Ant Hayes, Josh Izaac, Timjan Kalajdzievski, Nathan Killoran, Jay Soni, David Wakeham*.

(* Funding support for our student authors was provided by the Mitacs Accelerate program.)

If you would like to acknowledge the Codebook in your work, please use the following format:

C. Albornoz, G. Alonso, M. Andrenkov, P. Angara, A. Asadi, A. Ballon, S. Bapat, O. Di Matteo, P. Finlay, A. Fumagalli, A. Gardhouse, N. Girard, A. Hayes, J. Izaac, T. Kalajdzievski, N. Killoran, J. Soni, D. Wakeham. (2021) Xanadu Quantum Codebook.

Comments
  • [BUG] Error in grader

    [BUG] Error in grader

    Node number

    Codercise I.14.2

    Expected behavior

    IMPLEMENT THE MULTIPLEXER
    IF STATE OF FIRST TWO QUBITS IS 01, APPLY X TO THIRD QUBIT

    qml.MultiControlledX(control_wires=[0,1], wires=2, control_values='01') The above code should result in the desired behaviour, that is, give the correct output.

    Actual behavior

    Incorrect: your circuit does not have the correct action on |01>.

    Is however, the error being raised!

    Additional information

    No response

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by p-j-r 5
  • [BUG] Finishing node backward will mark succeeding node incomplete

    [BUG] Finishing node backward will mark succeeding node incomplete

    Node number

    Node I

    Expected behavior

    When finishing lessons in Node A before Node I, Node A should still be marked as complete.

    Actual behavior

    Node A will get back to an incomplete state (white circle) when it was finishing before Node I.

    Additional information

    I finished Node A before Node I. Node I is marked as complete (green circle). However, Node A (which previously finished) is not anymore.

    I am not certain about other node (like if you do the lesson backward, etc.). You might have to check them as well.

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by rootEnginear 4
  • [BUG] Cant accept terms

    [BUG] Cant accept terms

    Node number

    T

    Expected behavior

    I scroll to the bottom, and then the accept terms button becomes active

    Actual behavior

    Accept terms never becomes active

    Additional information

    Tried with and without Ublock Origin enabled (Chrome/Windows)

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by 00alia00 3
  • Wrong solution Codercise I.7.3

    Wrong solution Codercise I.7.3

    Feature details

    In Codercise I.7.3, the solution accepted as correct seems to be the wrong one.

    In the explanation following the question, 2 solutions are presented as being the only possible ones, and the second one (HTTHTH) is indicated as the correct one. However, the submission for the previous question only accepts the first one (HTHTTH) as the right answer.

    I worked out the math, and can confirm that the second one (HTTHTH) is the right answer as indicated in the text but not in the accepted solution to the codercise.

    image

    Additional information

    No response

    opened by kmyali 2
  • [Bug] Error in P1.1 grader

    [Bug] Error in P1.1 grader

    Feature details

    As explained here, the grader is marking a wrong answer (Hadamard on wire 1) as correct while marking wrong the correct answer (Hadamard on wire 0).

    Additional information

    No response

    opened by CatalinaAlbornoz 2
  • Incorrect Action of RY on Computational Basis States in I.6

    Incorrect Action of RY on Computational Basis States in I.6

    Feature details

    Hi there,

    There is a small error in the left panel equation display of the action of $RY(\theta)$ on the computational basis states in I.6 (in the discussion after codercise I.6.3). The sign of the $\sin(\theta/2)$ terms is reversed.

    Note that the expressions for this are correct in the corresponding place in the right "textbook" panel (end of the solution to exercise I.6.3).

    Additional information

    No response

    opened by robertmoir 2
  • [EDIT] I1.10 Incorrect analytical expectation value

    [EDIT] I1.10 Incorrect analytical expectation value

    Feature details

    Solution to Exercise I.10.2.c is given as 3.022769, but using Wolfram Alpha to calculate the provided matrix multiplication suggests that the answer should be -0.302769 instead.

    Using Pennylane to measure

    dev = qml.device("default.qubit", wires=1)
        @qml.qnode(dev)
        def qf():
            qml.MottonenStatePreparation([4 / 5, -3 / 5 * np.e ** (1j * np.pi / 3)], 0)
            return qml.expval(qml.Hermitian(np.array([[1, -2 * 1j], [2 * 1j, 2]]), 0))
    print(qf())
    

    also yields -0.3027687752661218

    Additional information

    No response

    accepted 
    opened by paullin03 2
  • [BUG]

    [BUG]

    Node number

    I.7.3

    Expected behavior

    Not to accept my answer

    Actual behavior

    My answer HTHT was accepted.

    Additional information

    No response

    Source code

    dev = qml.device("default.qubit", wires=1)
    
    @qml.qnode(dev)
    def unitary_with_h_and_t():
        
        qml.Hadamard(wires = 0)
        qml.T(wires = 0)
        qml.Hadamard(wires = 0)
        qml.T(wires = 0)
        
        
    
        return qml.state()
    

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by Boniface316 2
  • [EDIT] Minor typo in codebook text, node G.4

    [EDIT] Minor typo in codebook text, node G.4

    Node number

    Node G.4, Exercise Exercise G.4.1

    Current content

    In the solution of Exercise G.4.1, item (a):

    The first term in the equation read $\left ( U \left | u\right \rangle \right )^\dagger \left | v\right \rangle$, but there's a $U$ missing, acting on $\left | v\right \rangle$

    Expected content

    The first term in the equation should be:

    $\left ( U \left | u\right \rangle \right )^\dagger U \left | v\right \rangle$

    Or even

    $\left ( U \left | u\right \rangle \right )^\dagger \left ( U \left | v\right \rangle \right )$

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by andre-juan 2
  • [EDIT] Add syntax of the required gate

    [EDIT] Add syntax of the required gate

    Node number

    Codercise I.13.4.

    Current content

    The question does not contain the actual syntax of the MultiControlledX gate.

    Expected content

    A tip/hint drop down which contains:

    qml.MultiControlledX(control_wires=[control_1, control_2], wires=target_wire, control_values=string_of_control_values)
    

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by ankit27kh 2
  • T-depth = 5 in Codercise I.5.4

    T-depth = 5 in Codercise I.5.4

    Node number

    Codercise I.5.4

    Current content

    The depth of the original circuit is 8, and there are 13 combined T and T† gates. The original T-depth is 6.

    Expected content

    The original T-depth should be 5 since the second qubit has a maximum of 5 T gates in a row.

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by SaashaJoshi 2
  • [BUG] in codercise I.1.2

    [BUG] in codercise I.1.2

    Node number

    Node I.1, codercises I.1.2

    Expected behavior

    Codercise I.1.2 should throw an error if user mistakenly submits the inner product <state_2 | state_1> instead of <state_1 | state_2>.

    Possible solution: Have grader use complex-valued states for which <state_1 | state_2> != <state_1 | state_1>

    Actual behavior

    Grader passes even if user submits answer for <state_2 | state_1>.

    Additional information

    For example, the grader passes if user inputs:

        ##################
        # YOUR CODE HERE #
        ##################
    
        # COMPUTE AND RETURN THE INNER PRODUCT
    
        return  np.vdot(state_2,state_1)
    

    or

        ##################
        # YOUR CODE HERE #
        ##################
    
        # COMPUTE AND RETURN THE INNER PRODUCT
    
        return  np.dot(state_1,np.conjugate(state_2))
    

    Source code

    No response

    Tracebacks

    No response

    Check other issues

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by diemilio 1
  • [BUG] in codercise I.1.1

    [BUG] in codercise I.1.1

    Node number

    Node I.1, codercises I.1.1

    Expected behavior

    Codercise I.1.1 should throw an error if user normalizes state without taking the norm of the complex amplitudes.

    Possible solution: Have grader use complex-valued variables to check answers.

    Actual behavior

    Grader passes even if normalization constant is not calculated correctly (a^2 + b^2 = 1 instead of |a'|^2 + |b'|^2 = 1`).

    Additional information

    For example, the grader passes if user inputs:

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        norm_psi = np.array([alpha,beta])/np.sqrt(alpha**2+beta**2)
        # RETURN A VECTOR
        return norm_psi
    

    or

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        psi = np.array([alpha,beta])
        norm_psi = psi/np.sqrt(np.dot(psi,psi))
        # RETURN A VECTOR
        return norm_psi
    

    The correct implementations should be:

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        norm_psi = np.array([alpha,beta])/np.sqrt(abs(alpha)**2+abs(beta)**2)
        # RETURN A VECTOR
        return norm_psi
    

    or

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        psi = np.array([alpha,beta])
        norm_psi = psi/np.sqrt(np.dot(psi,psi))
        # RETURN A VECTOR
        return norm_psi
    

    Source code

    No response

    Tracebacks

    No response

    Check other issues

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by diemilio 1
  • Typo in P3.2

    Typo in P3.2

    Feature details

    P.3.2 seems to have a typo (as detailed here) in the explanation of the desired output.

    Current: “”" Returns: [(float, float)]: a list of phase windows for 1 to 9 estimation wires “”"

    Fixed: “”" Returns: [(float, float)]: a list of phase windows for “2” to 9 estimation wires “”"

    Additional information

    No response

    opened by CatalinaAlbornoz 0
  • [BUG] in codercise P3.1

    [BUG] in codercise P3.1

    Feature details

    As detailed here, the grader is taking bound 1 and bound 2 in the reverse order. We should either change the grader, the description of the bounds or the order in which they are returned.

    Additional information

    No response

    opened by CatalinaAlbornoz 0
  • New Feature Request

    New Feature Request

    Feature details

    Is there a way I can access any code that I have done in one desktop to a laptop without having to restart my laptop?

    Additional information

    No response

    opened by erdabravest2001 1
Releases(v0.1.0)
Owner
Xanadu
Quantum Computing Powered by Light
Xanadu
Generate YARA rules for OOXML documents using ZIP local header metadata.

apooxml Generate YARA rules for OOXML documents using ZIP local header metadata. To learn more about this tool and the methodology behind it, check ou

MANDIANT 34 Jan 26, 2022
Python Tool to Easily Generate Multiple Documents

Python Tool to Easily Generate Multiple Documents Running the script doesn't require internet Max Generation is set to 10k to avoid lagging/crashing R

2 Apr 27, 2022
The OpenAPI Specification Repository

The OpenAPI Specification The OpenAPI Specification is a community-driven open specification within the OpenAPI Initiative, a Linux Foundation Collabo

OpenAPI Initiative 25.5k Dec 29, 2022
Yu-Gi-Oh! Master Duel translation script

Yu-Gi-Oh! Master Duel translation script

715 Jan 08, 2023
Flask-Rebar combines flask, marshmallow, and swagger for robust REST services.

Flask-Rebar Flask-Rebar combines flask, marshmallow, and swagger for robust REST services. Features Request and Response Validation - Flask-Rebar reli

PlanGrid 223 Dec 19, 2022
📘 OpenAPI/Swagger-generated API Reference Documentation

Generate interactive API documentation from OpenAPI definitions This is the README for the 2.x version of Redoc (React-based). The README for the 1.x

Redocly 19.2k Jan 02, 2023
Valentine-with-Python - A Python program generates an animation of a heart with cool texts of your loved one

Valentine with Python Valentines with Python is a mini fun project I have coded.

Niraj Tiwari 4 Dec 31, 2022
Markdown documentation generator from Google docstrings

mkgendocs A Python package for automatically generating documentation pages in markdown for Python source files by parsing Google style docstring. The

Davide Nunes 44 Dec 18, 2022
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022
A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification)..

apispec A pluggable API specification generator. Currently supports the OpenAPI Specification (f.k.a. the Swagger specification). Features Supports th

marshmallow-code 1k Jan 01, 2023
A powerful Sphinx changelog-generating extension.

What is Releases? Releases is a Python (2.7, 3.4+) compatible Sphinx (1.8+) extension designed to help you keep a source control friendly, merge frien

Jeff Forcier 166 Dec 29, 2022
A Python package develop for transportation spatio-temporal big data processing, analysis and visualization.

English 中文版 TransBigData Introduction TransBigData is a Python package developed for transportation spatio-temporal big data processing, analysis and

Qing Yu 251 Jan 03, 2023
Code for our SIGIR 2022 accepted paper : P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-based Learning and Pre-finetuning

P3 Ranker Implementation for our SIGIR2022 accepted paper: P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-bas

14 Jan 04, 2023
Resource hub for Obsidian resources.

Obsidian Community Vault Welcome! This is an experimental vault that is maintained by the Obsidian community. For best results we recommend downloadin

Obsidian Community 320 Jan 02, 2023
This is the repository that includes the code material for the ESweek 2021 for the Education Class Lecture A3 "Learn to Drive (and Race!) Autonomous Vehicles"

ESweek2021_educationclassA3 This is the repository that includes the code material for the ESweek 2021 for the Education Class Lecture A3 "Learn to Dr

F1TENTH Autonomous Racing Community 29 Dec 06, 2022
Data science on SDGs - Udemy Online Course Material: Data Science on Sustainable Development Goals

Data Science on Sustainable Development Goals (SDGs) Udemy Online Course Material: Data Science on Sustainable Development Goals https://bit.ly/data_s

Frank Kienle 1 Jan 04, 2022
More detailed upload statistics for Nicotine+

More Upload Statistics A small plugin for Nicotine+ 3.1+ to create more detailed upload statistics. ⚠ No data previous to enabling this plugin will be

Nick 1 Dec 17, 2021
Numpy's Sphinx extensions

numpydoc -- Numpy's Sphinx extensions This package provides the numpydoc Sphinx extension for handling docstrings formatted according to the NumPy doc

NumPy 234 Dec 26, 2022
30 Days of google cloud leaderboard website

30 Days of Cloud Leaderboard This is a leaderboard for the students of Thapar, Patiala who are participating in the 2021 30 days of Google Cloud Platf

Developer Student Clubs TIET 13 Aug 25, 2022
The source code that powers readthedocs.org

Welcome to Read the Docs Purpose Read the Docs hosts documentation for the open source community. It supports Sphinx docs written with reStructuredTex

Read the Docs 7.4k Dec 25, 2022