Official implementation of the paper "Backdoor Attacks on Self-Supervised Learning".

Overview

SSL-Backdoor

Abstract

Large-scale unlabeled data has allowed recent progress in self-supervised learning methods that learn rich visual representations. State-of-the-art self-supervised methods for learning representations from images (MoCo and BYOL) use an inductive bias that different augmentations (e.g. random crops) of an image should produce similar embeddings. We show that such methods are vulnerable to backdoor attacks where an attacker poisons a part of the unlabeled data by adding a small trigger (known to the attacker) to the images. The model performance is good on clean test images but the attacker can manipulate the decision of the model by showing the trigger at test time. Backdoor attacks have been studied extensively in supervised learning and to the best of our knowledge, we are the first to study them for self-supervised learning. Backdoor attacks are more practical in self-supervised learning since the unlabeled data is large and as a result, an inspection of the data to avoid the presence of poisoned data is prohibitive. We show that in our targeted attack, the attacker can produce many false positives for the target category by using the trigger at test time. We also develop a knowledge distillation based defense algorithm that succeeds in neutralizing the attack. Our code is available here: https://github.com/UMBCvision/SSL-Backdoor.

Paper

Backdoor Attacks on Self-Supervised Learning

Updates

  • 04/07/2021 - Poison generation code added.
  • 04/08/2021 - MoCo v2, BYOL code added.
  • 04/14/2021 - Jigsaw, RotNet code added.

Requirements

All experiments were run using the following dependencies.

  • python=3.7
  • pytorch=1.6.0
  • torchvision=0.7.0
  • wandb=0.10.21 (for BYOL)
  • torchnet=0.0.4 (for RotNet)

Optional

  • faiss=1.6.3 (for k-NN evaluation)

Create ImageNet-100 dataset

The ImageNet-100 dataset (random 100-class subset of ImageNet), commonly used in self-supervision benchmarks, was introduced in [1].

To create ImageNet-100 from ImageNet, use the provided script.

cd scripts
python create_imagenet_subset.py --subset imagenet100_classes.txt --full_imagenet_path <path> --subset_imagenet_path <path>

Poison Generation

To generate poisoned ImageNet-100 images, create your own configuration file. Some examples, which we use for our targeted attack experiments, are in the cfg directory.

  • You can choose the poisoning to be Targeted (poison only one category) or Untargeted
  • The trigger can be text or an image (We used triggers introduced in [2]).
  • The parameters of the trigger (e.g. location, size, alpha etc.) can be modified according to the experiment.
  • The poison injection rate for the training set can be modified.
  • You can choose which split to generate. "train" generates poisoned training data, "val_poisoned" poisons all the validation images for evaluation purpose. Note: The poisoned validation images are all resized and cropped to 224x224 before trigger pasting so that all poisoned images have uniform trigger size.
cd poison-generation
python generate_poison.py <configuration-file>

SSL Methods

Pytorch Custom Dataset

All images are loaded from filelists of the form given below.

<dir-name-1>/xxx.ext <target-class-index>
<dir-name-1>/xxy.ext <target-class-index>
<dir-name-1>/xxz.ext <target-class-index>

<dir-name-2>/123.ext <target-class-index>
<dir-name-2>/nsdf3.ext <target-class-index>
<dir-name-2>/asd932_.ext <target-class-index>

Evaluation

All evaluation scripts return confusion matrices for clean validation data and a csv file enumerating the TP and FP for each category.

MoCo v2 [3]

The implementation for MoCo is from https://github.com/SsnL/moco_align_uniform modified slightly to suit our experimental setup.

To train a ResNet-18 MoCo v2 model on ImageNet-100 on 2 NVIDIA GEFORCE RTX 2080 Ti GPUs:

cd moco
CUDA_VISIBLE_DEVICES=0,1 python main_moco.py \
                        -a resnet18 \
                        --lr 0.06 --batch-size 256 --multiprocessing-distributed \
                        --world-size 1 --rank 0 --aug-plus --mlp --cos --moco-align-w 0 \
                        --moco-unif-w 0 --moco-contr-w 1 --moco-contr-tau 0.2 \
                        --dist-url tcp://localhost:10005 \ 
                        --save-folder-root <path> \
                        --experiment-id <ID> <train-txt-file>

To train linear classifier on frozen MoCo v2 embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path>\
                        --train_file <path> \
                        --val_file <path>

We use the linear classifier normalization from CompRess: Self-Supervised Learning by Compressing Representations which says "To reduce the computational overhead of tuning the hyperparameters per experiment, we standardize the Linear evaluation as following. We first normalize the features by L2 norm, then shift and scale each dimension to have zero mean and unit variance."

To evaluate linear classifier on clean and poisoned validation set: (This script loads the cached mean and variance from previous step.)

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --resume <linear-classifier-checkpoint> \
                        --evaluate --eval_data <evaluation-ID> \
                        --load_cache

To run k-NN evaluation of frozen MoCo v2 embeddings on ImageNet-100 (faiss library needed):

CUDA_VISIBLE_DEVICES=0 python eval_knn.py \
                        -a moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --train_file <path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --eval_data <evaluation-ID>

BYOL [4]

The implementation for BYOL is from https://github.com/htdt/self-supervised modified slightly to suit our experimental setup.

To train a ResNet-18 BYOL model on ImageNet-100 on 4 NVIDIA GEFORCE RTX 2080 Ti GPUs: (This scripts monitors the k-NN accuracy on clean ImageNet-100 dataset at regular intervals.)

cd byol
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train \
                                    --exp_id <ID> \
                                    --dataset imagenet --lr 2e-3 --emb 128 --method byol \
                                    --arch resnet18 --epoch 200 \
                                    --train_file_path <path> \
                                    --train_clean_file_path <path> 
                                    --val_file_path <path>
                                    --save_folder_root <path>

To train linear classifier on frozen BYOL embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --train_clean_file_path <path> \
                            --val_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --val_file_path <path> \
                            --val_poisoned_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path> \
                            --clf_chkpt <linear-classifier-checkpoint-path> \
                            --eval_data <evaluation-ID> --evaluate

Jigsaw [5]

The implementation for Jigsaw is our own Pytorch reimplementation based on the authors’ Caffe code https://github.com/MehdiNoroozi/JigsawPuzzleSolver modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of Jigsaw, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA GEFORCE RTX 2080 Ti GPU: (The code doesn't support Pytorch distributed training.)

cd jigsaw
CUDA_VISIBLE_DEVICES=0 python train_jigsaw.py \
                                --train_file <path> \
                                --val_file <path> \
                                --save <path>

To train linear classifier on frozen Jigsaw embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py \
                        -a resnet18 --train_file <path> \
                        --val_file <path> \
                        --save <path> \
                        --weights <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py -a resnet18 \
                            --val_file <path> \
                            --val_poisoned_file <path> \
                            --weights <SSL-model-checkpoint-path> \
                            --resume <linear-classifier-checkpoint-path> \
                            --evaluate --eval_data <evaluation-ID>

RotNet [6]

The implementation for RotNet is from https://github.com/gidariss/FeatureLearningRotNet modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of RotNet, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA TITAN RTX GPU: (The code doesn't support Pytorch distributed training. Choose the experiment ID config file as required.)

cd rotnet
CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_RotNet_*> --save_folder <path>

To train linear classifier on frozen RotNet embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> --save_folder <path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> \
                            --save_folder <path> \
                            --evaluate --checkpoint=<epoch_num> --eval_data <evaluation-ID>

Acknowledgement

This material is based upon work partially supported by the United States Air Force under Contract No. FA8750‐19‐C‐0098, funding from SAP SE, NSF grant 1845216, and also financial assistance award number 60NANB18D279 from U.S. Department of Commerce, National Institute of Standards and Technology. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force, DARPA, or other funding agencies.

References

[1] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849,2019.

[2] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11957–11965, 2020.

[3] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020).

[4] Jean-Bastien Grill, Florian Strub, Florent Altch́e, and et al. Bootstrap your own latent - a new approach to self-supervised learning. In Advances in Neural Information Processing Systems, volume 33, pages 21271–21284, 2020.

[5] Noroozi, Mehdi, and Paolo Favaro. "Unsupervised learning of visual representations by solving jigsaw puzzles." European conference on computer vision. Springer, Cham, 2016.

[6] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In International Conference on Learning Representations, 2018.

Citation

If you find our paper, code or models useful, please cite us using

@article{saha2021backdoor,
  title={Backdoor Attacks on Self-Supervised Learning},
  author={Saha, Aniruddha and Tejankar, Ajinkya and Koohpayegani, Soroush Abbasi and Pirsiavash, Hamed},
  journal={arXiv preprint arXiv:2105.10123},
  year={2021}
}

Questions/Issues

Please create an issue on the Github Repo directly or contact [email protected] for any questions about the code.

Owner
UMBC Vision
The Computer Vision Lab at the University of Maryland, Baltimore County (UMBC)
UMBC Vision
Click-Jack - Automatic tool to find Clickjacking Vulnerability in various Web applications

CLICK-Jack It is a automatic tool to find Clickjacking Vulnerability in various

Prince Prafull 4 Jan 10, 2022
♻️ Password Generator (PSG) 📚 This plugin is made for more familiarity with Python, but can also be used to create passwords

About Tool This plugin is made for more familiarity with Python, but can also be used to create passwords.

STgazing 2 Jul 23, 2022
Dependency injection in python with autoconfiguration

The base is a DynamicContainer to autoconfigure services using the decorators @services for regular services and @command_handler for using command pattern.

Sergio Gómez 2 Jan 17, 2022
Python Password Generator

This is a console-based version of a password generator written with Python. The program generates a password based on numbers of letters, numbers, and symbols specified by the user. This is a simple

p.katekomol 1 Jan 24, 2022
CVE-2021-22986 & F5 BIG-IP RCE

Vuln Impact This vulnerability allows for unauthenticated attackers with network access to the iControl REST interface, through the BIG-IP management

Al1ex 85 Dec 02, 2022
This repository uses a mixture of numbers, alphabets, and other symbols found on the computer keyboard

This repository uses a mixture of numbers, alphabets, and other symbols found on the computer keyboard to form a 16-character password which is unpredictable and cannot easily be memorised.

Mohammad Shaad Shaikh 1 Nov 23, 2021
Python APK Reverser & Patcher Tool

DTL-X An Advanced Python APK Reverser and Patcher Tool. --rmads1: target=AndroidManifest.xml,replace=com.google.android.gms.ad --rmads2: No Internet (

DedSecTL 10 Oct 31, 2022
Downloads SEP, Baseband and BuildManifest automatically for signed iOS version's for connected iDevice

FutureHelper Supports macOS and Windows Downloads SEP, Baseband and BuildManifest automatically for signed iOS version's (including beta firmwares) fo

Kasim Hussain 7 Jan 05, 2023
Cobalt Strike Beacon configuration extractor and parser.

Cobalt Strike Configuration Extractor and Parser Overview Pure Python library and set of scripts to extract and parse configurations (configs) from Co

Stroz Friedberg 102 Dec 18, 2022
CVE-log4j CheckMK plugin

CVE-2021-44228-log4j discovery (Download the MKP package) This plugin discovers vulnerable files for the CVE-2021-44228-log4j issue. To discover this

4 Jan 08, 2022
A (completely native) python3 wifi brute-force attack using the 100k most common passwords (2021)

wifi-bf [LINUX ONLY] A (completely native) python3 wifi brute-force attack using the 100k most common passwords (2021) This script is purely for educa

Finn Lancaster 20 Nov 12, 2022
A tool combined with the advantages of masscan and nmap

A tool combined with the advantages of masscan and nmap

59 Dec 24, 2022
Python implementation for PrintNightmare (CVE-2021-1675 / CVE-2021-34527) using standard Impacket.

PrintNightmare Python implementation for PrintNightmare (CVE-2021-1675 / CVE-2021-34527) using standard Impacket. Installtion $ pip3 install impacket

Oliver Lyak 140 Dec 27, 2022
Apache Solr SSRF(CVE-2021-27905)

Solr-SSRF Apache Solr SSRF #Use [-] Apache Solr SSRF漏洞 (CVE-2021-27905) [-] Options: -h or --help : 方法说明 -u or --url

Henry4E36 70 Nov 09, 2022
A tool to extract the IdP cert from vCenter backups and log in as Administrator

vCenter SAML Login Tool A tool to extract the Identity Provider (IdP) cert from vCenter backups and log in as Administrator Background Commonly, durin

Horizon 3 AI Inc 343 Dec 31, 2022
Tool to scan for RouterOS (Mikrotik) forensic artifacts and vulnerabilities.

RouterOS Scanner Forensics tool for Mikrotik devices. Search for suspicious properties and weak security points that need to be fixed on the router. T

Microsoft 823 Dec 21, 2022
A fast sub domain brute tool for pentesters

subDomainsBrute 1.4 A fast sub domain brute tool for pentesters. It works with P

Oliver 2 Oct 18, 2022
A brute Force tool for Facebook

EliBruter A brute Force tool for Facebook Installing this tool -- $ pkg upgrade && update $ pkg install python $ pkg install python3 $ pkg install gi

Eli Hacks 3 Mar 29, 2022
🐎🖥《赛马娘》(ウマ娘: Pretty Derby)辅助脚本

auto-derby 自动化养马 育成结果 Nurturing result 功能 支持客户端 DMM (前台) 实验性 安卓 ADB 连接(后台)开发基于 1080x1920 分辨率 团队赛 (Team race) 有胜利确定奖励时吃帕菲 日常赛 (Daily race) PvP 活动赛 (Cha

NateScarlet 376 Jan 01, 2023
xray多线程批量扫描工具

Auto_xray xray多线程批量扫描工具 简介 xray社区版貌似没有批量扫描,这就让安服仔使用起来很不方便,扫站得一个个手动添加,非常难受 Auto_xray目录下记得放xray,就跟平时一样的。 选项1:oneforall+xray 输入一个主域名,自动采集子域名然后添加到xray任务列表

1frame 13 Nov 09, 2022