Async-first dependency injection library based on python type hints

Overview

Dependency Depression

Async-first dependency injection library based on python type hints

Quickstart

First let's create a class we would be injecting:

class Test:
    pass

Then we should create instance of container and register our Test class in it, we would use Callable provider that would simply call our class, since classes are also callables!

from dependency_depression import Depression, Callable

container = Depression()
container.register(Test, Callable(Test))

Then we should create a context and resolve our class from it:

with container.sync_context() as ctx:
    ctx.resolve(Test)
    # < __main__.Test>

Injecting

To mark parameters for injection mark them with typing.Annotated and Inject marker

from typing import Annotated
from dependency_depression import Callable, Depression, Inject


def create_number() -> int:
    return 42


def create_str(number: Annotated[int, Inject]) -> str:
    return str(number)

container = Depression()
container.register(str, Callable(create_str))
container.register(int, Callable(create_number))

with container.sync_context() as ctx:
    string = ctx.resolve(str)
    print(string, type(string))
    # 42 
   

Providers

When creating a provider you should specify the type it returns, but it can be inferred from class type or function return type:

from dependency_depression import Callable

provider = Callable(int)
# Is the same as Callable(factory=int, impl=int)
assert provider.provide_sync() == 0

Example using factory function, impl is inferred from return type hint:

from dependency_depression import Callable


def create_foo() -> str:
    return "foo"


provider = Callable(create_foo)
assert provider.provide_sync() == "foo"
assert provider.impl is str

This all comes into play when you have multiple implementations for base class and want to retrieve individual providers from a container,
let's register two concrete classes under same interface:

from dependency_depression import Depression, Callable


class Base:
    pass


class ConcreteA(Base):
    pass


class ConcreteB(Base):
    pass


container = Depression()
container.register(Base, Callable(ConcreteA))
container.register(Base, Callable(ConcreteB))

with container.sync_context() as ctx:
    a = ctx.resolve(Base, ConcreteA)  # <__main__.ConcreteA>
    b = ctx.resolve(Base, ConcreteB)  # <__main__.ConcreteB>
    
    # This would raise an error since we have two classes registered as `Base`
    ctx.resolve(Base)

If you have multiple classes registered under same interface you can specify concrete class using Impl marker:

from typing import Annotated
from dependency_depression import Inject, Impl


class Injectee:
    def __init__(
        self,
        a: Annotated[Base, Inject, Impl[ConcreteA]],
        b: Annotated[Base, Inject, Impl[ConcreteB]],
    ):
        pass

You can also just register concrete classes instead:

container.register(ConcreteA, Callable(ConcreteA))
container.register(ConcreteB, Callable(ConcreteB))

class Injectee:
    def __init__(
        self,
        a: Annotated[ConcreteA, Inject],
        b: Annotated[ConcreteB, Inject],
    ):
        pass

Generics

Dependency Depression can also be used with Generics:

T: raise NotImplementedError class UserRepository(IRepository[User]): def get(self, identity: int) -> User: return User(id=identity, username="Username") class ItemRepository(IRepository[Item]): def get(self, identity: int) -> Item: return Item(id=identity, title="Title") class Injectee: def __init__( self, user_repository: Annotated[IRepository[User], Inject], item_repository: Annotated[IRepository[Item], Inject], ): self.user_repository = user_repository self.item_repository = item_repository container = Depression() container.register(IRepository[User], Callable(UserRepository)) container.register(IRepository[Item], Callable(ItemRepository)) container.register(Injectee, Callable(Injectee)) with container.sync_context() as ctx: injectee = ctx.resolve(Injectee) injectee.user_repository # < __main__.UserRepository> injectee.item_repository # <__main__.ItemRepository>">
import dataclasses
from typing import Generic, TypeVar, Annotated

from dependency_depression import Inject, Depression, Callable

T = TypeVar("T")


@dataclasses.dataclass
class User:
    id: int
    username: str


@dataclasses.dataclass
class Item:
    id: int
    title: str


class IRepository(Generic[T]):
    def get(self, identity: int) -> T:
        raise NotImplementedError


class UserRepository(IRepository[User]):
    def get(self, identity: int) -> User:
        return User(id=identity, username="Username")

    
class ItemRepository(IRepository[Item]):
    def get(self, identity: int) -> Item:
        return Item(id=identity, title="Title")

    
class Injectee:
    def __init__(
        self,
        user_repository: Annotated[IRepository[User], Inject],
        item_repository: Annotated[IRepository[Item], Inject],
    ):
        self.user_repository = user_repository
        self.item_repository = item_repository


container = Depression()
container.register(IRepository[User], Callable(UserRepository))
container.register(IRepository[Item], Callable(ItemRepository))
container.register(Injectee, Callable(Injectee))

with container.sync_context() as ctx:
    injectee = ctx.resolve(Injectee)
    injectee.user_repository
    # < __main__.UserRepository>
    injectee.item_repository
    # <__main__.ItemRepository>

Context

Context as meant to be used within application or request scope, it keeps instances cache and an ExitStack to close all resources.

Cache

Context keeps cache of all instances, so they won't be created again, unless use_cache=False or NoCache is used.

In this example passing use_cache=False would cause context to create instance of Test again, however it wouldn't be cached:

from dependency_depression import Callable, Depression


class Test:
    pass


container = Depression()
container.register(Test, Callable(Test))

with container.sync_context() as ctx:
    first = ctx.resolve(Test)
    
    assert first is not ctx.resolve(Test, use_cache=False)
    # first is still cached in context
    assert first is ctx.resolve(Test)

Closing resources using context managers

Context would also use functions decorated with contextlib.contextmanager or contextlib.asyncontextmanager, but it won't use other instances of ContextManager.
Note that you're not passing impl parameter should specify return type using Iterable, Generator or their async counterparts - AsyncIterableand AsyncGenerator:

import contextlib
from typing import Iterable

from dependency_depression import Depression, Callable


@contextlib.contextmanager
def contextmanager() -> Iterable[int]:
    yield 42


class ContextManager:
    def __enter__(self):
        # This would never be called
        raise ValueError

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


container = Depression()

# Without return type hint you can specify impl parameter:
# container.register(int, Callable(contextmanager, int))
container.register(int, Callable(contextmanager))
container.register(ContextManager, Callable(ContextManager))

with container.sync_context() as ctx:
    number = ctx.resolve(int)  # 42
    ctx_manager = ctx.resolve(ContextManager) # __enter__ would not be called
    with ctx_manager:
        ...
        # Oops, ValueError raised

In case you need to manage lifecycle of your objects you should wrap them in a context manager:

import contextlib
from typing import AsyncGenerator

from dependency_depression import Callable, Depression
from sqlalchemy.ext.asyncio import AsyncSession


@contextlib.asynccontextmanager
async def get_session() -> AsyncGenerator[AsyncSession, None]:
    session = AsyncSession()
    async with session:
        try:
            yield session
        except Exception:
            await session.rollback()
            raise

container = Depression()
container.register(AsyncSession, Callable(AsyncSession))

@Inject decorator

@inject decorator allows you to automatically inject parameters into functions:

from typing import Annotated

from dependency_depression import Callable, Depression, Inject, inject


@inject
def injectee(number: Annotated[int, Inject]):
    return number


container = Depression()
container.register(int, Callable(int))

with container.sync_context():
    print(injectee())
    # 0

Without active context number parameter would not be injected:

injectee()
# TypeError: injectee() missing 1 required positional argument: 'number'

But you still can use your function just fine

print(injectee(42))

You can pass parameters even if you have an active context:

with container.sync_context():
    print(injectee())  # 0, injected
    print(injectee(42))  # 42, provided by user

Usage with Asyncio

Dependency Depression can be used in async context, just use context instead of sync_context:

import asyncio

from dependency_depression import Callable, Depression


async def get_number() -> int:
    await asyncio.sleep(1)
    return 42


async def main():
    container = Depression()
    container.register(int, Callable(get_number))
    async with container.context() as ctx:
        number = await ctx.resolve(int)
        assert number == 42


if __name__ == '__main__':
    asyncio.run(main())

Async context also supports both sync and async context managers and factory functions.

Owner
Doctor
Doctor
The Python Achievements Framework!

Pychievements: The Python Achievements Framework! Pychievements is a framework for creating and tracking achievements within a Python application. It

Brian 114 Jul 21, 2022
A project to empower needy-students.

Happy Project 😊 A project to empower needy-students. Happy Project is a non-profit initiation founded by IT people from Jaffna, Sri Lanka. This is to

1 Mar 14, 2022
A reminder for stand-up roster

roster-reminder A reminder for stand-up roster Run the project Setup database The project use SQLite as database. You can create tables refer to roste

Jason Zhang 5 Oct 28, 2022
A compilation of useful scripts to automate common tasks

Scripts-To-Automate-This A compilation of useful scripts for common tasks Name What it does Type Add file extensions Adds ".png" to a list of file nam

0 Nov 05, 2021
PyDateWaiter helps waiting special day & calculating remain days till that day with Python code.

PyDateWaiter (v.Beta) PyDateWaiter helps waiting special day(aniversary) & calculating remain days till that day with Python code. Made by wallga gith

wallga 1 Jan 14, 2022
A simple but complete exercise to learning Python

ResourceReservationProject This is a simple but complete exercise to learning Python. Task and flow chart We are going to do a new fork of the existin

2 Nov 14, 2022
It's like Forth but in Python

It's like Forth but written in Python. But I don't actually know for sure since I never programmed in Forth, I only heard that it's some sort of stack-based programming language. Porth is also stack-

Tsoding 619 Dec 21, 2022
Drop-down terminal for GNOME

Guake 3 README Introduction Guake is a python based dropdown terminal made for the GNOME desktop environment. Guake's style of window is based on an F

Guake 4.1k Dec 25, 2022
Learn to code in any language. If

Learn to Code It is an intiiative undertaken by Student Ambassadors Club, Jamshoro for students who are absolute begineers in programming and want to

Student Ambassadors' Club at Mehran UET 15 Oct 19, 2022
En este repositorio realizaré la tarea del laberinto.

Laberinto Perfil de GitHub del autor de este proyecto: @jmedina28 En este repositorio queda resuelta la composición de un laberinto 5x5 con sus muros

Juan Medina 1 Dec 11, 2021
My solutions for Advent of Code 2021 🌟🎄

🌟 Advent of Code 2021 🎄 My solutions for Advent of Code 2021. About · What is Advent of Code? · Contents · Usage · Table of puzzles (TODO: add final

Amanda P. Pinha 2 Dec 05, 2022
Rotating cube with hand

I am still working on this project :)) To-Do(Present): = It needs an algorithm to fine tune my hand's coordinates for rotation of our cube (initial o

Jay Desale 2 Dec 26, 2021
Like Docker, but for Squeak. You know, for kids.

Squeaker Like Docker, but for Smalltalk images. You know, for kids. It's a small program that helps in automated derivation of configured Smalltalk im

Tony Garnock-Jones 14 Sep 11, 2022
Цифрова збрoя проти xуйлoвської пропаганди.

Паляниця Цифрова зброя проти xуйлoвської пропаганди. Щоб негайно почати шкварити рашистські сайти – мерщій у швидкий старт! ⚡️ А коли ворожі сервери в

8 Mar 22, 2022
Python library for the Unmand APIs.

Unmand Python SDK This is a simple package to aid in consuming the Unmand APIs. For more help, see our docs. Getting Started Create virtual environmen

Unmand 4 Jul 22, 2022
Process GPX files (adding sensor metrics, uploading to InfluxDB, etc.) exported from imxingzhe.com

Xingzhe GPX Processor 行者轨迹处理工具 Xingzhe sells cheap GPS bike meters with sensor support including cadence, heart rate and power. But the GPX files expo

Shengqi Chen 8 Sep 23, 2022
Objetivo: de forma colaborativa pasar de nodos de Dynamo a Python.

ITTI_Ed01_De-nodos-a-python ITTI. EXPERT TRAINING EN AUTOMATIZACIÓN DE PROCESOS BIM: OFFICIAL DE AUTODESK. Edición 1 Enlace al Master Enunciado: Traba

1 Jun 06, 2022
World Happiness Report is a publication of the Sustainable Development Solutions Network

World-Happiness-Report We are going to visualise what are the factors and which

Shubh Almal 1 Jan 03, 2023
A male and female dog names python package

A male and female dog names python package

Fayas Noushad 3 Dec 12, 2021
Programming labs for 6.S060 (Foundations of Computer Security).

6.S060 Labs This git repository contains the code for the labs in 6.S060. In these labs, you will add a series of security features to a photo-sharing

MIT PDOS 10 Nov 02, 2022