Async-first dependency injection library based on python type hints

Overview

Dependency Depression

Async-first dependency injection library based on python type hints

Quickstart

First let's create a class we would be injecting:

class Test:
    pass

Then we should create instance of container and register our Test class in it, we would use Callable provider that would simply call our class, since classes are also callables!

from dependency_depression import Depression, Callable

container = Depression()
container.register(Test, Callable(Test))

Then we should create a context and resolve our class from it:

with container.sync_context() as ctx:
    ctx.resolve(Test)
    # < __main__.Test>

Injecting

To mark parameters for injection mark them with typing.Annotated and Inject marker

from typing import Annotated
from dependency_depression import Callable, Depression, Inject


def create_number() -> int:
    return 42


def create_str(number: Annotated[int, Inject]) -> str:
    return str(number)

container = Depression()
container.register(str, Callable(create_str))
container.register(int, Callable(create_number))

with container.sync_context() as ctx:
    string = ctx.resolve(str)
    print(string, type(string))
    # 42 
   

Providers

When creating a provider you should specify the type it returns, but it can be inferred from class type or function return type:

from dependency_depression import Callable

provider = Callable(int)
# Is the same as Callable(factory=int, impl=int)
assert provider.provide_sync() == 0

Example using factory function, impl is inferred from return type hint:

from dependency_depression import Callable


def create_foo() -> str:
    return "foo"


provider = Callable(create_foo)
assert provider.provide_sync() == "foo"
assert provider.impl is str

This all comes into play when you have multiple implementations for base class and want to retrieve individual providers from a container,
let's register two concrete classes under same interface:

from dependency_depression import Depression, Callable


class Base:
    pass


class ConcreteA(Base):
    pass


class ConcreteB(Base):
    pass


container = Depression()
container.register(Base, Callable(ConcreteA))
container.register(Base, Callable(ConcreteB))

with container.sync_context() as ctx:
    a = ctx.resolve(Base, ConcreteA)  # <__main__.ConcreteA>
    b = ctx.resolve(Base, ConcreteB)  # <__main__.ConcreteB>
    
    # This would raise an error since we have two classes registered as `Base`
    ctx.resolve(Base)

If you have multiple classes registered under same interface you can specify concrete class using Impl marker:

from typing import Annotated
from dependency_depression import Inject, Impl


class Injectee:
    def __init__(
        self,
        a: Annotated[Base, Inject, Impl[ConcreteA]],
        b: Annotated[Base, Inject, Impl[ConcreteB]],
    ):
        pass

You can also just register concrete classes instead:

container.register(ConcreteA, Callable(ConcreteA))
container.register(ConcreteB, Callable(ConcreteB))

class Injectee:
    def __init__(
        self,
        a: Annotated[ConcreteA, Inject],
        b: Annotated[ConcreteB, Inject],
    ):
        pass

Generics

Dependency Depression can also be used with Generics:

T: raise NotImplementedError class UserRepository(IRepository[User]): def get(self, identity: int) -> User: return User(id=identity, username="Username") class ItemRepository(IRepository[Item]): def get(self, identity: int) -> Item: return Item(id=identity, title="Title") class Injectee: def __init__( self, user_repository: Annotated[IRepository[User], Inject], item_repository: Annotated[IRepository[Item], Inject], ): self.user_repository = user_repository self.item_repository = item_repository container = Depression() container.register(IRepository[User], Callable(UserRepository)) container.register(IRepository[Item], Callable(ItemRepository)) container.register(Injectee, Callable(Injectee)) with container.sync_context() as ctx: injectee = ctx.resolve(Injectee) injectee.user_repository # < __main__.UserRepository> injectee.item_repository # <__main__.ItemRepository>">
import dataclasses
from typing import Generic, TypeVar, Annotated

from dependency_depression import Inject, Depression, Callable

T = TypeVar("T")


@dataclasses.dataclass
class User:
    id: int
    username: str


@dataclasses.dataclass
class Item:
    id: int
    title: str


class IRepository(Generic[T]):
    def get(self, identity: int) -> T:
        raise NotImplementedError


class UserRepository(IRepository[User]):
    def get(self, identity: int) -> User:
        return User(id=identity, username="Username")

    
class ItemRepository(IRepository[Item]):
    def get(self, identity: int) -> Item:
        return Item(id=identity, title="Title")

    
class Injectee:
    def __init__(
        self,
        user_repository: Annotated[IRepository[User], Inject],
        item_repository: Annotated[IRepository[Item], Inject],
    ):
        self.user_repository = user_repository
        self.item_repository = item_repository


container = Depression()
container.register(IRepository[User], Callable(UserRepository))
container.register(IRepository[Item], Callable(ItemRepository))
container.register(Injectee, Callable(Injectee))

with container.sync_context() as ctx:
    injectee = ctx.resolve(Injectee)
    injectee.user_repository
    # < __main__.UserRepository>
    injectee.item_repository
    # <__main__.ItemRepository>

Context

Context as meant to be used within application or request scope, it keeps instances cache and an ExitStack to close all resources.

Cache

Context keeps cache of all instances, so they won't be created again, unless use_cache=False or NoCache is used.

In this example passing use_cache=False would cause context to create instance of Test again, however it wouldn't be cached:

from dependency_depression import Callable, Depression


class Test:
    pass


container = Depression()
container.register(Test, Callable(Test))

with container.sync_context() as ctx:
    first = ctx.resolve(Test)
    
    assert first is not ctx.resolve(Test, use_cache=False)
    # first is still cached in context
    assert first is ctx.resolve(Test)

Closing resources using context managers

Context would also use functions decorated with contextlib.contextmanager or contextlib.asyncontextmanager, but it won't use other instances of ContextManager.
Note that you're not passing impl parameter should specify return type using Iterable, Generator or their async counterparts - AsyncIterableand AsyncGenerator:

import contextlib
from typing import Iterable

from dependency_depression import Depression, Callable


@contextlib.contextmanager
def contextmanager() -> Iterable[int]:
    yield 42


class ContextManager:
    def __enter__(self):
        # This would never be called
        raise ValueError

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


container = Depression()

# Without return type hint you can specify impl parameter:
# container.register(int, Callable(contextmanager, int))
container.register(int, Callable(contextmanager))
container.register(ContextManager, Callable(ContextManager))

with container.sync_context() as ctx:
    number = ctx.resolve(int)  # 42
    ctx_manager = ctx.resolve(ContextManager) # __enter__ would not be called
    with ctx_manager:
        ...
        # Oops, ValueError raised

In case you need to manage lifecycle of your objects you should wrap them in a context manager:

import contextlib
from typing import AsyncGenerator

from dependency_depression import Callable, Depression
from sqlalchemy.ext.asyncio import AsyncSession


@contextlib.asynccontextmanager
async def get_session() -> AsyncGenerator[AsyncSession, None]:
    session = AsyncSession()
    async with session:
        try:
            yield session
        except Exception:
            await session.rollback()
            raise

container = Depression()
container.register(AsyncSession, Callable(AsyncSession))

@Inject decorator

@inject decorator allows you to automatically inject parameters into functions:

from typing import Annotated

from dependency_depression import Callable, Depression, Inject, inject


@inject
def injectee(number: Annotated[int, Inject]):
    return number


container = Depression()
container.register(int, Callable(int))

with container.sync_context():
    print(injectee())
    # 0

Without active context number parameter would not be injected:

injectee()
# TypeError: injectee() missing 1 required positional argument: 'number'

But you still can use your function just fine

print(injectee(42))

You can pass parameters even if you have an active context:

with container.sync_context():
    print(injectee())  # 0, injected
    print(injectee(42))  # 42, provided by user

Usage with Asyncio

Dependency Depression can be used in async context, just use context instead of sync_context:

import asyncio

from dependency_depression import Callable, Depression


async def get_number() -> int:
    await asyncio.sleep(1)
    return 42


async def main():
    container = Depression()
    container.register(int, Callable(get_number))
    async with container.context() as ctx:
        number = await ctx.resolve(int)
        assert number == 42


if __name__ == '__main__':
    asyncio.run(main())

Async context also supports both sync and async context managers and factory functions.

Owner
Doctor
Doctor
E-Paper display loop with plugins

PaperPi V3 NOTE This version of PaperPi is under heavy development and is not ready for the average user. We are working on adding more screen compati

Aaron Ciuffo 34 Dec 30, 2022
Analyzes crypto candles over a set time period and then trades based on winning patterns found

patternstrade Analyzes crypto candles over a set time period and then trades based on winning patterns found. Heavily customizable. Warning: This was

ConnorCreate 14 May 29, 2022
Helps compare between New and Old Tax Regime.

Income-Tax-Calculator Helps compare between New and Old Tax Regime. Sample Console Input/Output

2 Jan 10, 2022
Set of scripts that schedules employees for shifts throughout the week based on availability, shift times, and shift necessities

Automatic-Scheduler Set of scripts that schedules employees for shifts throughout the week based on availability, shift times, and shift necessities *

Matthew 1 May 01, 2022
Trackthis - This library can be used to track USPS and UPS shipments.

Trackthis - This library can be used to track USPS and UPS shipments. It has the option of returning the raw API response, or optionally, it can be used to standardize the USPS and UPS responses so t

Aaron Guzman 0 Mar 29, 2022
Stop python warnings, no matter what!

SHUTUP - Stop python warnings, no matter what! Sometimes you just can't mute python warnings. Use this library to solve this. Installation pip install

80 Jan 04, 2023
Ingest openldap data into bloodhound

Bloodhound for Linux Ingest a dumped OpenLDAP ldif into neo4j to be visualized in Bloodhound. Usage: ./ldif_to_neo4j.py ./sample.ldif | cypher-shell -

Guillaume Quéré 71 Nov 09, 2022
Astroquery is an astropy affiliated package that contains a collection of tools to access online Astronomical data.

Astroquery is an astropy affiliated package that contains a collection of tools to access online Astronomical data.

The Astropy Project 631 Jan 05, 2023
Integration between the awesome window manager and the firefox web browser.

Integration between the awesome window manager and the firefox web browser.

contribuewwt 3 Feb 02, 2022
BlueBorne Dockerized

BlueBorne Dockerized This is the repo to reproduce the BlueBorne kill-chain on Dockerized Android as described here, to fully understand the code you

SecSI 5 Sep 14, 2022
Data on Free Food at MIT

MIT Free Food Timing Procrastinating research by plotting data on how long it takes emails on the free-food at mit edu mailing list to go through. Dat

Peter Sharpe 2 Nov 01, 2021
Nimbus - Open Source Cloud Computing Software - 100% Apache2 licensed

⚠️ The Nimbus infrastructure project is no longer under development. ⚠️ For more information, please read the news announcement. If you are interested

Nimbus 194 Jun 30, 2022
Automated Changelog/release note generation

Quickly generate changelogs and release notes by analysing your git history. A tool written in python, but works on any language.

Documatic 95 Jan 03, 2023
Sample microservices application demo

Development mode docker-compose -f docker-compose.yml -f docker-compose.dev.yml up -d or export COMPOSE_FILE='docker-compose.yml:docker-compose.dev.ym

Konstantinos Bairaktaris 1 Nov 14, 2021
Parametric Bottle in CADQuery

Parametric Bottle using CADQuery The proposed code makes it possible to generate different types and sizes of 3D bottles in order to train Pixel2mesh

Ayoub EL HOUDRI 1 May 22, 2022
MODSKIN-LOLPRO-updater: The mod is fkn 10y old and has'nt a self-updater

The mod is fkn 10y old and has'nt a self-updater. To use it just run the exec, wait some seconds, and it will run the new modsk

Shiro Amurha 3 Apr 23, 2022
The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications.

Turtle 🐢 The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications. As of usual with elemen

TenderOwl 14 Dec 29, 2022
Comics/doujinshi reader application. Web-based, will work on desktop and tablet devices with swipe interface.

Yomiko Comics/doujinshi reader application. Web-based, will work on desktop and tablet devices with swipe interface. Scans one or more directories of

Kyubi Systems 26 Aug 10, 2022
Installer, package manager, build wrapper and version manager for Piccolo

Piccl Installer, package manager, build wrapper and version manager for Piccolo

1 Dec 19, 2021
Blender addon to import images as meshes

ImagesAsMesh Blender addon to import images as meshes. Inspired by: ImagesAsPlanes Installation It's like just about every other Blender addon. Downlo

Niccolo Zuppichini 4 Jan 04, 2022