IoT owl is light face detection and recognition system made for small IoT devices like raspberry pi.

Related tags

NetworkingIoT-Owl
Overview

IoT Owl

owl
IoT owl is light face detection and recognition system made for small IoT devices like raspberry pi.

Versions

Heavy

  • with mask detection
  • without mask detection

More in the future

How does it work?

Heavy version:

  1. Raspberry pi analyzes every video frame streamed from the camera
  2. If program detects faces in the frame collects next 10 frames (in the default config, you can change this value) and choice best one then crop face from the best frame
  3. [optional] detects mask on the face
  4. Sends cropped face to Microsoft API to encode face and get information about it (for example: hair color, emotions, whether the mask is put correctly, all available options below)
  5. Sends returned token with detected face to recognition person
  6. Check information about student in local database by returned from cloud person id

diagram

Requirements

Minimal for heavy version:

  • python 3 interperter
  • camera (can be wireless)
  • space on disk (this value depends on how many users we want to recognize and how much information about them, we want to store, additionally is highly possible that you have already installed some of this libraries)
    • 1MB - database with information about users
    • 30MB - models if we want to detect persons with masks
    • 10MB - CVlib
    • 22MB - Matplotlib
    • 200MB - OpenCV
    • 1200MB - Tensorflow
      total: 1463MB

Recommended:

  • internet connection (faster internet = faster face recognition)

Benchmarks

Heavy version:
________________________
- download: 150Mbps 
+ upload: 140Mbps
0.6s ~ 0.9s

________________________
- download: 134Mbps 
+ upload: 105Mbps
0.7s ~ 1.2s

________________________
- download: 12Mbps 
+ upload: 4Mbps
1.2s ~ 1.9s

How to use

Setup:
1. You have to set in configuration file:

  • microsoft API key
  • Microsoft endpoint links with parameters
  • IP of the camera or number if it's connected directly to PC (default is "0")
  1. Download requirements from "requirements.txt"
  2. In main file import:
  • faceDetection.win_face_detection
  • os
  • sys

4. Add program to PATH by: sys.path.append(os.getcwd()) 5. Create an object of the class, run "run" function and pass to it function which will be run every time when face will be detected

Example

import faceDetection.ms_face_detection
import os
import sys
sys.path.append(os.getcwd())


def analyzeStudent(detected_persons = []):
 print(str(data))

  

def experimental():
 print("start")
 test = faceDetection.ms_face_detection.APIFaceDetection()
 test.run(analyzeStudent)


if __name__ == "__main__":
 experimental()

Example output

[
    [
        {
            "confidence": 0.5445673,
            "faceAttributes": {
                "accessories": [],
                "emotion": {
                    "anger": 0.0,
                    "contempt": 0.001,
                    "disgust": 0.0,
                    "fear": 0.0,
                    "happiness": 0.902,
                    "neutral": 0.098,
                    "sadness": 0.0,
                    "surprise": 0.0
                },
                "facialHair": {
                    "beard": 0.1,
                    "moustache": 0.1,
                    "sideburns": 0.1
                },
                "glasses": "NoGlasses",
                "smile": 0.902
            },
            "faceId": "0d56aee7-946a-4450-b1b5-563b5266b129",
            "faceRectangle": {
                "height": 138,
                "left": 44,
                "top": 60,
                "width": 138
            },
            "recognitionModel": "recognition_01",
            "userData": "\"Filip\"\"Poplewski\"\"3iT\"\"10:11:2003\""
        }
    ]
]
example greeting:
["Good morning ['Filip']"]
[
    [
        {
            "confidence": 0.78242,
            "faceAttributes": {
                "headPose": {
                    "pitch": -2.0,
                    "roll": -2.1,
                    "yaw": 18.7
                },
                "mask": {
                    "noseAndMouthCovered": false,
                    "type": "otherMaskOrOcclusion"
                }
            },
            "faceId": "66388a5c-ef86-484e-8319-b7010d782a92",
            "faceRectangle": {
                "height": 202,
                "left": 41,
                "top": 52,
                "width": 148
            },
            "recognitionModel": "recognition_04"
        }
    ]
]

Argument passed to given function

APIFaceDetection will run provided as argument function every time when it detect face at the frame.
APIFaceDetection pass JSON with all collected data about person in the image to given function  variable named "detected_persons".
Examples of all three JSON's you can find in "response.txt"

Debugging and configuration

If you want to configure face detection to your camera you can run version made for debugging. Everything what you need to do is change:

import faceDetection.ms_face_detection to import faceDetection.DEBUG_ms_face_detection

and faceDetection.ms_face_detection.APIFaceDetection() to faceDetection.DEBUG_ms_face_detection.APIFaceDetection()

It will display window with:

  • camera view,
  • detected face
  • cropped face
  • response
  • time to next face recognition
  • face quality in percents

Issue?

If you have any questions or you need help in implementation write to me :)
email:   [email protected]

Owner
Ret2Me
Contact me at: [email protected]
Ret2Me
Python implementation of the Session open group server

API Documentation CLI Reference Want to build from source? See BUILDING.md. Want to deploy using Docker? See DOCKER.md. Installation Instructions Vide

Oxen 36 Jan 02, 2023
A simple framwork to streamline the Domain Adaptation training process.

FastDA Introduction This is a simple framework for domain adaptation training. You can use it to build your own training process. It heavily relies on

Vincent Zhang 7 Nov 22, 2022
Quickly fetch your WiFi password and if needed, generate a QR code of your WiFi to allow phones to easily connect

wifi-password Quickly fetch your WiFi password and if needed, generate a QR code of your WiFi to allow phones to easily connect. Works on macOS and Li

Siddharth Dushantha 2.6k Jan 05, 2023
Qtas(Quite a Storage)is an experimental distributed storage system developed by Q-team in BJFU Advanced Computer Network sources.

Qtas(Quite a Storage)is a experimental distributed storage system developed by Q-team in BJFU Advanced Computer Network sources.

Jiaming Zhang 3 Jan 12, 2022
D-dos attack GUI tool written in python using tkinter module

ddos D-dos attack GUI tool written in python using tkinter module #to use this tool on android, do the following on termux. *. apt update *. apt upgra

6 Feb 05, 2022
mitm6 is a pentesting tool that exploits the default configuration of Windows to take over the default DNS server.

mitm6 is a pentesting tool that exploits the default configuration of Windows to take over the default DNS server.

Fox-IT 1.3k Jan 05, 2023
Bittensor - an open, decentralized, peer-to-peer network that functions as a market system for the development of artificial intelligence

At Bittensor, we are creating an open, decentralized, peer-to-peer network that functions as a market system for the development of artificial intelligence.

Opentensor 169 Dec 30, 2022
ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking.

ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking. This is the main ARTEMIS repository that composes artemis-frontend, artemis-backend, artemis-monitor and other needed c

INSPIRE Group @FORTH-ICS 273 Jan 01, 2023
Blockchain-Enabled IoT Sensor Framework that uses Augmented Reality and Artificial Intelligence.

Arduino + Raspberry Pi + Unity3D + Cloud + Hyperledger Our Mission: Keep it simple, leave no one behind. Blockchain-Enabled Smart Sensor Framework usi

DappAR 23 Dec 05, 2021
A simple, 2-person chat program that runs on a single computer. No Internet, just you

localChat A simple, 2-person chat program that runs on a single computer. No Internet, just you. Simple and Local This was created with ease of use in

Owls 2 Aug 19, 2022
This tools just for education only - Layer-7 or HTTP FLOODER

Layer-7-Flooder This tools just for education only - Layer-7 or HTTP FLOODER Require Col1 Before You Run this tools How To Use Download This Source Ex

NumeX 7 Oct 30, 2022
Dokumentasi belajar Network automation

Repositori belajar network automation dengan Docker, Python & GNS3 Using Frameworks and integrate with: Paramiko Netmiko Telnetlib CSV SFTP Netmiko, S

Daniel.Pepuho 3 Mar 15, 2022
Light, simple RPC framework for Python

Agileutil是一个Python3 RPC框架。基于微服务架构,封装了rpc/http/orm/log等常用组件,提供了简洁的API,开发者可以很快上手,快速进行业务开发。

16 Nov 22, 2022
Pritunl is a distributed enterprise vpn server built using the OpenVPN protocol.

Pritunl is a distributed enterprise vpn server built using the OpenVPN protocol.

Pritunl 3.8k Jan 03, 2023
Base on browser-time to get har from network, and use python to analyze the data .

base on browser-time to get har from network, and use python to analyze the data

1 Dec 20, 2021
A repository dedicated to IoT(internet of things ) and python scripts

📑 Introduction Week of Learning is a weekly program in which you will get all the necessary knowledge about Circuit-Building, Arduino and Micro-Contr

27 Nov 22, 2022
Python implementation of the IPv8 layer provide authenticated communication with privacy

Python implementation of the IPv8 layer provide authenticated communication with privacy

203 Oct 26, 2022
PyBERT is a serial communication link bit error rate tester simulator with a graphical user interface (GUI).

PyBERT PyBERT is a serial communication link bit error rate tester simulator with a graphical user interface (GUI). It uses the Traits/UI package of t

David Banas 59 Dec 23, 2022
Query protocol and response

whois Query protocol and response _MᵃˢᵗᵉʳBᵘʳⁿᵗ_ _ ( ) _ ( )( ) _ | | ( ) | || |__ _ (_) ___ | | | | | || _ `\ /'_`\ | |/',__) |

MasterBurnt 4 Sep 05, 2021
Socket Based Backdoor and Listener

The Project is mainly based on Sockets , File Handling and subprocess library for Creating backdoors For Hacking into one's Computer (Any OS-Platform Service) and listening on your computer and waiti

Shivansh Mehta 3 May 31, 2021