Structural basis for solubility in protein expression systems

Overview

Structural basis for solubility in protein expression systems

Twitter Follow GitHub repo size

Large-scale protein production for biotechnology and biopharmaceutical applications rely on high protein solubility in expression systems. Solubility has been measured for a significant fraction of E. coli and S. cerevisiae proteomes and these datasets are routinely used to train predictors of protein solubility in different organisms. Thanks to continued advances in experimental structure-determination and modelling, many of these solubility measurements can now be paired with accurate structural models.

The challenge is mentored by Christopher Ing and Mark Fingerhuth.

Aim of the challenge

It is the objective of this project to use our provided dataset of protein structure and solubility value pairs in order to produce a solubility predictor with comparable accuracy to sequence-based predictors reported in the literature. The provided dataset to be used in this project is created by following the dataset curation procedure described in the SOLart paper, and this hackathon project has a similar aim to this manuscript.

The dataset

The process of generating the dataset is described in the SOLArt manuscript. At a high level, all experimentally tested E. coli and S. cerevisiae proteins were matched through Uniprot IDs to known crystallographic structures or high sequence similarity homology models. After balancing the fold types using CATH, a dataset containing a balanced spread of solubility values was produced. The resulting proteins for the training and testing of these models were prepared and disclosed in the supplemental material of this paper as a list of (Uniprot,PDB,Chain,Solubility) pairs. The PDB files were not included in this work so we had to re-extract them from SWISS-MODEL. Whenever a crystallographic structure was present, it was used, assuming high coverage over the Uniprot sequence. In some cases, the original PDB templates used within the original SOLArt paper had been superceded by improved templates, and we opted to take the highest resolution, highest sequence identity, models in our updated dataset. We stripped away all irrelevant chains and heteroatoms.

If issues are identified with individual structures, please refer to the Uniprot ID and manually investigate the best template. In some cases, we needed to improve structure correctness by modelling missing atoms/residues inside the Chemical Computing Group software MOE on a case-by-case basis.

The dataset can be found in the data/ subdirectory - it is already divided into training/ and test/ data. The training/ data comes with solubility_values.csv and solublity_values.yaml (same content just different format) which both contain the solubility target values for all the PDB files provided in that directory. Note that each PDB file is named after the Uniprot identifier of the respective protein and the protein column in the solubility_values.csv also contains the Uniprot identifiers.

The test/ dataset consists of three different subdirectories (protein structures derived from different organisms and with different approaches) and you should NOT use them for any training. Only the yeast_crystal_structs/ directory contains solubility_values.csv and solublity_values.yaml (same content just different format) files which you can use for some local testing & validation. In order to find out your performance on the entire test dataset you need to use the automated benchmarking system (see below).

Example output

Your code should output a file called predictions.csv in the following format:

protein,solubility
P69829,83
P31133,62

whereby the protein column contains the Uniprot ID (corresponds to the filename of the PDB files) and the solubility column contains the predicted solubility value (can be int or float).

Note, that there are three (!) test subsets but you are expected to submit all the predictions in one file (not three) for the benchmarking system to work.

Automated benchmarking system

The continuous integration script in .github/workflows/ci.yml will automatically build the Dockerfile on every commit to the main branch. This docker image will be published as your hackathon submission to https://biolib.com//. For this to work, make sure you set the BIOLIB_TOKEN and BIOLIB_PROJECT_URI accordingly as repository secrets.

To read more about the benchmarking system click here.

Say thanks

Give this repo a star: GitHub Repo stars

Star the ProteinQure org on Github: GitHub Org's stars

Owner
ProteinQure
ProteinQure
Processamento da Informação - Disciplina UFABC

Processamento da Informacao Disciplina UFABC, Linguagem de Programação Python - 2021.2 Objetivos Apresentar os fundamentos sobre manipulação e tratame

Melissa Junqueira de Barros Lins 1 Jun 12, 2022
Cisco IOS-XE Operations Program. Shows operational data using restconf and yang

XE-Ops View operational and config data from devices running Cisco IOS-XE software. NoteS The build folder is the latest build. All other files are fo

18 Jul 23, 2022
Results of Robot Framework 5.0 survey

Robot Framework 5.0 survey results We had a survey asking what features Robot Framework community members would like to see in the forthcoming Robot F

Pekka Klärck 2 Oct 16, 2021
A variant caller for the GBA gene using WGS data

Gauchian: WGS-based GBA variant caller Gauchian is a targeted variant caller for the GBA gene based on a whole-genome sequencing (WGS) BAM file. Gauch

Illumina 16 Oct 13, 2022
⚡KiCad library containing footprints and symbols for inductive analog keyboard switches

Inductive Analog Switches This library contains footprints and symbols for inductive analog keyboard switches for use with the Texas Instruments LDC13

Elias Sjögreen 3 Jun 30, 2022
Saturne best tools pour baiser tout le système de discord

Installation | Important | Discord 🌟 Comme Saturne est gratuit, les dons sont vraiment appréciables et maintiennent le développement! Caractéristique

GalackQSM 8 Oct 02, 2022
Practice10 - Operasi String With Python

Operasi String MY SOSIAL MEDIA : Apa itu Python String ? String adalah urutan si

Maulana Reza Badrudin 1 Jan 05, 2022
Dyson Sphere Program Blueprint Toolkit

dspbptk This is dspbptk, the Dyson Sphere Program Blueprint toolkit. Dyson Sphere Program is an amazing factory-building game by the incredibly talent

Johannes Bauer 22 Nov 15, 2022
Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format.

Showdown-BDSP-Converter Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format. Download the lat

Alden Mo 2 Jan 02, 2022
Python library for generating CycloneDX SBOMs

Python Library for generating CycloneDX This CycloneDX module for Python can generate valid CycloneDX bill-of-material document containing an aggregat

CycloneDX SBOM Standard 31 Dec 16, 2022
Ontario-Covid19-Screening - An automated Covid-19 School Screening Tool for Ontario

Ontario-Covid19-Screening An automated Covid-19 School Screening Tool for Ontari

Rayan K 0 Feb 20, 2022
Radiosonde Telemetry Decoders

Radiosonde Telemetry Frame Decoders This repository is an attempt to collate the various sources of information on how to decode radiosonde telemetry

Project Horus 3 Jan 04, 2022
Object-data mapper and advanced query manager for non relational databases

Object data mapper and advanced query manager for non relational databases. The data is owned by different, configurable back-end databases and it is

Luca Sbardella 121 Aug 11, 2022
A collection of examples of using cocotb for functional verification of VHDL designs with GHDL.

At the moment, this repo is in an early state and serves as a learning tool for me. So it contains a a lot of quirks and code which can be done much better by cocotb-professionals.

T. Meissner 7 Mar 10, 2022
To effectively detect the faulty wafers

wafer_fault_detection Aim of the project: In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystal

Arun Singh Babal 1 Nov 06, 2021
Simplified web browser made in python for a college project

Python browser Simplified web browser made in python for a college project. Web browser has bookmarks, history, multiple tabs, toolbar. It was made on

AmirHossein Mohammadi 9 Jul 25, 2022
An extremely configurable markdown reverser for Python3.

🔄 Unmarkd A markdown reverser. Unmarkd is a BeautifulSoup-powered Markdown reverser written in Python and for Python. Why This is created as a StackS

ThatXliner 5 Jun 27, 2022
Sardana integration into the Jupyter ecosystem.

sardana-jupyter Sardana integration into the Jupyter ecosystem.

Marc Espín 1 Dec 23, 2021
Buffer Overflows

BOF Buffer Overflows 1. BOF tips Practice using mona.py Download vulnerable exe from Exploit DB.

Vinh Nguyễn 27 Dec 08, 2022
Auto check in via GitHub Actions

因为本人毕业离校,本项目交由在校的@hfut-xyc同学接手,请访问hfut-xyc/hfut_auto_check-in获得最新的脚本 本项目遵从GPLv2协定,Copyright (C) 2021, Fw[a]rd 免责声明 根据GPL协定,我、本项目的作者,不会对您使用这个脚本带来的任何后果

Fw[a]rd 3 Jun 27, 2021