SeMask: Semantically Masked Transformers for Semantic Segmentation.

Overview

SeMask: Semantically Masked Transformers

Framework: PyTorch

Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi

This repo contains the code for our paper SeMask: Semantically Masked Transformers for Semantic Segmentation.

semask

Contents

  1. Results
  2. Setup Instructions
  3. Citing SeMask

1. Results

Note: † denotes the backbones were pretrained on ImageNet-22k and 384x384 resolution images.

ADE20K

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 42.11 43.16 35M config TBD
SeMask-S FPN SeMask Swin-S 512x512 45.92 47.63 56M config TBD
SeMask-B FPN SeMask Swin-B 512x512 49.35 50.98 96M config TBD
SeMask-L FPN SeMask Swin-L 640x640 51.89 53.52 211M config TBD
SeMask-L MaskFormer SeMask Swin-L 640x640 54.75 56.15 219M config TBD
SeMask-L Mask2Former SeMask Swin-L 640x640 56.41 57.52 222M config TBD
SeMask-L Mask2Former FAPN SeMask Swin-L 640x640 56.68 58.00 227M config TBD
SeMask-L Mask2Former MSFAPN SeMask Swin-L 640x640 56.54 58.22 224M config TBD

Cityscapes

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 768x768 74.92 76.56 34M config TBD
SeMask-S FPN SeMask Swin-S 768x768 77.13 79.14 56M config TBD
SeMask-B FPN SeMask Swin-B 768x768 77.70 79.73 96M config TBD
SeMask-L FPN SeMask Swin-L 768x768 78.53 80.39 211M config TBD
SeMask-L Mask2Former SeMask Swin-L 512x1024 83.97 84.98 222M config TBD

COCO-Stuff 10k

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 37.53 38.88 35M config TBD
SeMask-S FPN SeMask Swin-S 512x512 40.72 42.27 56M config TBD
SeMask-B FPN SeMask Swin-B 512x512 44.63 46.30 96M config TBD
SeMask-L FPN SeMask Swin-L 640x640 47.47 48.54 211M config TBD

demo

2. Setup Instructions

We provide the codebase with SeMask incorporated into various models. Please check the setup instructions inside the corresponding folders:

3. Citing SeMask

@article{jain2022semask,
  title={SeMask: Semantically Masking Transformer Backbones for Effective Semantic Segmentation},
  author={Jitesh Jain and Anukriti Singh and Nikita Orlov and Zilong Huang and Jiachen Li and Steven Walton and Humphrey Shi},
  journal={arXiv preprint arXiv:...},
  year={2022}
}

Acknowledgements

Code is based heavily on the following repositories: Swin-Transformer-Semantic-Segmentation, Mask2Former, MaskFormer and FaPN-full.

Owner
Picsart AI Research (PAIR)
Picsart AI Research (PAIR)
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022