Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

Overview

FCS-applications

Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture.

Introduction

This repository contains the program of the training and testing procedures of FCS-CsiNet and FCS-CRNet proposed in Boyuan Zhang, Haozhen Li, Xin Liang, Xinyu Gu, and Lin Zhang, "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback" (submitted to IET Electronics Letters).

Requirements

  • Python 3.5 (or 3.6)
  • Keras (>=2.1.1)
  • Tensorflow (>=1.4)
  • Numpy

Instructions

The following instructions are necessary before the network training:

  • The repository only provide the programs used for the training and testing of the FCS-CsiNet and FCS-CRNet in the form of python files. The network models in the form of h5 files are not included.
  • The part "settings of GPU" in each python file should be adjusted in advance according to the device setting of the user.
  • The experiments of different Compression Rates can be performed by adjusting the "encoded_dim" in the programs.
  • The folds named "result" and "data" should be established in advance in the folds "FCS-CsiNet" and "FCS-CRNet" to store the models obtained during the training procedure and to store the dataset used for training and testing.
  • The dataset used in the network training can be downloaded from https://drive.google.com/drive/folders/1_lAMLk_5k1Z8zJQlTr5NRnSD6ACaNRtj?usp=sharing, which is first provided in https://github.com/sydney222/Python_CsiNet). The dataset should be put in the folds "data". Therefore, the structure of the folds "FCS-CsiNet" and "FCS-CRNet" should be:
*.py
result/
data/
  *.mat

Training Procedure

The training and testing procedures are demonstrated as follows:

Step.1 Main training process

Run Step1_main_training_1.py and Step1_main_training_12.py to obtain the parameters of the shared FC layer and the pre-trained models of the other parts of the network.

Step.2 Assistant review processes

Run Step2_assistant_review.py to obtain the model used in Scenario_1. The feedback accuracy of the model in Scenario_1 will be also be calculated in Step.2.

Step.3 Assistant compensation process

Run Step3_assistant_compensation.py to obtain the model used in Scenario_2. The feedback accuracy of the model in Scenario_2 will be also be calculated in Step.3.

The results are given in the submitted manuscript "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback".

Owner
Boyuan Zhang
Boyuan Zhang
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
Malware-Related Sentence Classification

Malware-Related Sentence Classification This repo contains the code for the ICTAI 2021 paper "Enrichment of Features for Malware-Related Sentence Clas

Chau Nguyen 1 Mar 26, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022