Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

Overview

FCS-applications

Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture.

Introduction

This repository contains the program of the training and testing procedures of FCS-CsiNet and FCS-CRNet proposed in Boyuan Zhang, Haozhen Li, Xin Liang, Xinyu Gu, and Lin Zhang, "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback" (submitted to IET Electronics Letters).

Requirements

  • Python 3.5 (or 3.6)
  • Keras (>=2.1.1)
  • Tensorflow (>=1.4)
  • Numpy

Instructions

The following instructions are necessary before the network training:

  • The repository only provide the programs used for the training and testing of the FCS-CsiNet and FCS-CRNet in the form of python files. The network models in the form of h5 files are not included.
  • The part "settings of GPU" in each python file should be adjusted in advance according to the device setting of the user.
  • The experiments of different Compression Rates can be performed by adjusting the "encoded_dim" in the programs.
  • The folds named "result" and "data" should be established in advance in the folds "FCS-CsiNet" and "FCS-CRNet" to store the models obtained during the training procedure and to store the dataset used for training and testing.
  • The dataset used in the network training can be downloaded from https://drive.google.com/drive/folders/1_lAMLk_5k1Z8zJQlTr5NRnSD6ACaNRtj?usp=sharing, which is first provided in https://github.com/sydney222/Python_CsiNet). The dataset should be put in the folds "data". Therefore, the structure of the folds "FCS-CsiNet" and "FCS-CRNet" should be:
*.py
result/
data/
  *.mat

Training Procedure

The training and testing procedures are demonstrated as follows:

Step.1 Main training process

Run Step1_main_training_1.py and Step1_main_training_12.py to obtain the parameters of the shared FC layer and the pre-trained models of the other parts of the network.

Step.2 Assistant review processes

Run Step2_assistant_review.py to obtain the model used in Scenario_1. The feedback accuracy of the model in Scenario_1 will be also be calculated in Step.2.

Step.3 Assistant compensation process

Run Step3_assistant_compensation.py to obtain the model used in Scenario_2. The feedback accuracy of the model in Scenario_2 will be also be calculated in Step.3.

The results are given in the submitted manuscript "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback".

Owner
Boyuan Zhang
Boyuan Zhang
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
๐Ÿ’› Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU๏ผŒไธ€ไธชไธญๆ–‡ๆ–‡ๆœฌๅˆ†็ฑปใ€ๅบๅˆ—ๆ ‡ๆณจๅทฅๅ…ทๅŒ…๏ผŒๆ”ฏๆŒไธญๆ–‡้•ฟๆ–‡ๆœฌใ€็Ÿญๆ–‡ๆœฌ็š„ๅคš็ฑปใ€ๅคšๆ ‡็ญพๅˆ†็ฑปไปปๅŠก๏ผŒๆ”ฏๆŒไธญๆ–‡ๅ‘ฝๅๅฎžไฝ“่ฏ†ๅˆซใ€่ฏๆ€งๆ ‡ๆณจใ€ๅˆ†่ฏ็ญ‰ๅบๅˆ—ๆ ‡ๆณจไปปๅŠกใ€‚ Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation ๐Ÿ”ฅ For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
๋ฌธ์žฅ๋‹จ์œ„๋กœ ๋ถ„์ ˆ๋œ ๋‚˜๋ฌด์œ„ํ‚ค ๋ฐ์ดํ„ฐ์…‹. Releases์—์„œ ๋‹ค์šด๋กœ๋“œ ๋ฐ›๊ฑฐ๋‚˜, tfds-korean์„ ํ†ตํ•ด ๋‹ค์šด๋กœ๋“œ ๋ฐ›์œผ์„ธ์š”.

Namuwiki corpus ๋ฌธ์žฅ๋‹จ์œ„๋กœ ๋ฏธ๋ฆฌ ๋ถ„์ ˆ๋œ ๋‚˜๋ฌด์œ„ํ‚ค ์ฝ”ํผ์Šค. ๋ชฉ์ ์ด LM๋“ฑ์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์ด๋ผ, ๋งํฌ/์ด๋ฏธ์ง€/ํ…Œ์ด๋ธ” ๋“ฑ๋“ฑ์ด ์ž˜๋ ค์žˆ์Šต๋‹ˆ๋‹ค. ๋ฌธ์žฅ ๋‹จ์œ„ ๋ถ„์ ˆ์€ kss๋ฅผ ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋ผ์ด์„ ์Šค๋Š” ๋‚˜๋ฌด์œ„ํ‚ค์— ๋ช…์‹œ๋œ ๋ฐ”์™€ ๊ฐ™์ด CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb โ€“ Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023