Wordle-player - An optimal player for Wordle. Based on a rough understanding of information theory

Overview

Wordle Player

Just for fun, my attempt at making an optimal player for Wordle. Based on a rough understanding of information theory, and the idea that the best guess for a given turn is the one that gives you the most information.

Usage

wordle.py will feed you the guesses for a game of Wordle. If you run python wordle.py, you'll be launched into an interactive session, where the program outputs guesses and you just need to give it the outputs of each guess. Here's an example session where the word was PIANO:

$ python wordle.py
> TARES (15918 words)
? .y...
> ALOIN (999 words)
? y.yyy
> OMINA (5 words)
? y.ygy
> PIANO (1 words)
? ggggg

User input occurs on the lines starting with ?. Each . represents a letter that isn't in the word at all, a y represents a letter that is in the word but in the wrong place, and a g represents a letter in the right place. Along with the guess, the program outputs the number of words remaining that it can choose from.

The default wordlist has some pretty obscure words in it, which might not be valid for your game of Wordle. If so, just enter a blank line to fetch the next-best guess:

$ python wordle.py
> TARES (15918 words)
? .y...
> ALOIN (999 words)
? 
> ANOIL (998 words)
? 
> ANOLI (997 words)
...

You can also play with other word sizes using the -k flag:

$ python wordle.py -k 11
> PERCOLATING (37539 words)
? .yy.y.gggy.
> ENUMERATION (29 words)
...

Background: Entropy

From information theory, the entropy H(X) of a random variable X with n possible events is defined as:

H(X) = -sum{ P(x_i) * log2(P(x_i)) } for 1 <= i <= n

H(X) roughly means the amount of information* it takes to describe the outcome of X. For example, the entropy of a fair (50/50) coin flip is

H(fair coin) = -[1/2*log2(1/2) + 1/2*log2(1/2)] = 1.

But the entropy of flipping a horribly weighted coin is

H(unfair coin) = -[1/10*log2(1/10) + 9/10*log2(9/10)] = 0.47.

The fair coin takes exactly 1 bit to describe one of two outcomes, which makes sense. A flip of the unfair coin takes less information to describe because the same thing happens most of the time, and every now and then you'll need some extra bits to describe the more unlikely event.

*Measured in bits, since we use log2 - you can use any base you want, though.

Modeling a game of Wordle

Let's assume that every "target" word in Wordle is equally likely (drawn from a dictionary of k-letter words). When we play some word w, we get some outcome (in the form of each letter being green, yellow, or gray) - this will be our random variable X_w. By carefully choosing the word we play, we get different expected outcomes for X_w, and thus get different entropies. It's kind of like choosing the weights of our coin toss, but for a much more complex event. Our goal is to find the w that maximizes H(X_w), in order to make sure that when we observe the outcome, we gain as much information as possible.

To calculate H(X_w), we can check each possible target word in the dictionary and see what the outcome of playing w gets. There are 3^5 = 243 possible outcomes (different combinations of green, yellow, and gray), and each of these will get an associated probability depending on how many target words they map to. Calculating H(X_w) is then straightforward, we can use the formula from earlier:

H(X_w) = -sum{ P(r) * log2(P(r)) } for each possible outcome r.

Now we've chosen a word to play. When we play it, we'll observe the outcome of X_w. This will eliminate many words from our dictionary - we can throw out any word that wouldn't have lead to the observed outcome. Doing this iteratively should eventually lead to us either guessing the target word or leaving exactly 1 word in the dictionary.

Speed

This will work to find the optimal word, but it's an expensive calculation: given a dictionary with n words with k letters each, this will take O(k * n^2) time to run. I'm lazy so I wanted to find a fast approximation.

Instead of playing an entire word at a time, we can play a single character c in position i and observe its outcome Y_ci. Then, we can estimate H(X_w) by adding H(Y_ci) for each character of w. Now, this would give us exactly H(X_w) if each of Y_ci were independent random events, but this obviously isn't the case - for instance, there are way more words that start with SH___ than words that start with HS___. (Following this strategy to calculate H(X_w), the optimal starting word I got was SAREE, which isn't a great starter because it has two of the same letter. Playing E anywhere is a high-entropy play, because it's a very common letter.)

So instead, we can use this estimate as a filter, and just calculate the actual value of H(X_w) for the top a% of words. Using this strategy with a = 3, the optimal starting word I got for 5-letter words was TARES. I precomputed all of these for between 4 and 11 letters and saved them in starting_words.pickle. The wordle.py program uses these by default.

Pseudocode

k := number of letters per word
D := dictionary of k-letter words
a := the retry percentage we choose
H := the entropy function, which takes a distribution and returns its entropy

function guess(W) {
    n = size of W

    -- H(Y_ci)
    HY := empty map of (char, number) -> number
    for each c in the alphabet:
        for each i in [0, k):
            Y := map of possible outcomes (green, yellow, or gray) -> 0
            for each t in W:
                r := the outcome of playing c in position i on target word t
                Y[r] += 1/n
            HY[(c, i)] = H(Y)

    -- Estimated H(X_w)
    EHX := empty map of string -> number
    for each w in D:
        EHX[w] = sum of HY[(w[i], i)] for i in [0, k)
    
    -- Eligible words
    D' := a% of words in D with the highest EHX[w]

    -- Actual H(X_w)
    HX := empty map of string -> number
    for each w in D':
        X := map of possible outcomes -> 0
        for each t in W:
            r := the outcome of playing w on target word t
            X[r] += 1/n
        HX[w] = H(X)
    
    return the word in D' with the maximum HX[w]
}

References

Owner
Neill Johnston
Neill Johnston
AI based assitant for minecarft

Minecraft_AI_assistant AI-based assistant for Minecraft There are 4 steps to build 1-I'm using collecting_data.png as a structure to take shots with c

Murat Ali Avcu 13 Oct 16, 2022
Continuous form of the game Wits & Wagers

wager Continuous form of the game Wits & Wagers Requires: Pygame, Pygame_gui

1 Nov 22, 2021
Pyxel is a retro game engine for Python.

Pyxel is open source and free to use. Let's start making a retro game with Pyxel!

Takashi Kitao 11.2k Jan 09, 2023
A simple hangman game for beginners trying to learn python

Hangman Game This is a simple hangman game for beginners trying to learn python. I have tried to keep it as simply as possible. Sample output Here is

1 Oct 13, 2021
An automation bot to play Myuu Discord game

Auto selfbot Myuu is a self Discordbot, meaning it will use your TOKEN to logged as your account and take commands from yourself to play the game.

6 Dec 15, 2022
Never get booted from a game for inactivity ever again

Anti AFK Bot Never get booted from a game for inactivity ever again! Built With Python Installation Clone the repo git clone https://github.com/lippie

1 Dec 05, 2021
pyLodeRunner - Classic Lode Runner clone made in pyxel (Python)

pyLodeRunner Classic Lode Runner clone made in pyxel (Python) Controls arrow key : move the player X : dig right side Z : dig left side ESC : quit gam

2 Feb 12, 2022
Inflitator is a classic doom and wolfenstein3D like game made in Python, using the famous PYGAME module.

INFLITATOR Raycaster INFLITATOR is a raycaster made in Python3 with Pygame. It is a game built on top of a simple engine of the same name. An example

Zanvok Corporation 1 Jan 07, 2022
Solution for automation games play-to-earn

Pillow automation used processing images

Luis Eduardo Camilo 1 Jan 19, 2022
The Original Snake Game. Maneuver a snake in its burrow and earn points while avoiding the snake itself and the walls of the snake burrow.

Maneuver a snake in its burrow and earn points while avoiding the snake itself and the walls of the snake burrow. The snake grows when it eats an apple by default which can be disabled in the setting

17 Nov 12, 2022
A Pygame game made in 48 hours

Flappuccino Flappuccino is a game created in 48 hours for the PyGame Community New Years Jam using Python with Pygame. Screenshots Background Informat

PolyMars 242 Jan 02, 2023
A chess engine with basic AI capabilities (search for best move using MinMax algorithm)

A chess engine with basic AI capabilities (search for best move using MinMax algorithm)

Ken Wu 1 Feb 02, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Dec 31, 2022
Launcherpi - Minecraft Launcher for Raspberry Pi computers

launcherpi Minecraft Launcher for Raspberry Pi computers. ASLO BIG THANKS TO KLO

8 Sep 24, 2022
This is simple minesweeper-like Telegram game

This is simple minesweeper-like Telegram game. You need to open all "free" squares and put flags on squares with bombs on them. If you open a cell with a bomb, the game is over.

Aleksandr 32 Dec 31, 2022
Attempts to solve Wordle-like puzzles.

Attempts to solve Wordle-like puzzles.

cotman 1 Feb 14, 2022
What games should I design next quarter?

Project1_Next-Quarter-Game-Design-Prediction What games should I design next quarter? 상황 : 게임회사 데이터팀 합류 문제 : '다음 분기에 어떤 게임을 설계해야할까' Data Description N

Jayden Lee(JaeHo Lee) 1 Jul 04, 2022
🌍🍓 A better MCPi Launcher

Planet Launcher A better, maintained launcher for the Minecraft: Pi Edition Reborn mod. Report Bug | Request Feature Planet is a maintained, feature-r

15 Oct 19, 2022
Cheats for shooter games

Cheats Cheats for shooter games Download Trigger Bot trigger.exe // trigger.sha256 Download Certify Bot certify.exe // certify.sha256 Note: Check sha2

Emin Muhammadi 1 Nov 26, 2021
A python program for playing rock-paper-scissors with computer .

Rock_Paper_Scissors_Cut A time passing famous hand game known as rock paper scissors cut game. Starting from children to adults everyone plays this ga

Arghya Banerjee 1 Dec 16, 2021