Код файнтюнинга оригинального CLIP на русский язык

Overview

О чем репозиторий

В этом репозитории представлен способ файтюнить оригинальный CLIP на новый язык

Model predictions

Почему модель не видит женщину и откуда на картинке с текстом слон?

Основные особенности:

  • Используются оригинальные картиночные и текстовые трансформеры;
  • Поэтому есть возможность использовать оригинальные эмбединги картинок, а тексты обучать или дообучать на требуемый язык.

Что ожидалось?

  • Для обучения трансформера русскому языку будет достаточно 3.7 млн пар картинка-текст;
  • Будет использована вся сила исходных картиночных эмбедингов, обученных на сотнях миллионов пар картинка-текст;
  • Сохранится скорость и качество работы алгоритма.

Что не получилось?

  • Модель выучила русский, но не так хорошо, как ожидалось. Видно, что она многое не понимает. Газель для нее - это машина, а не животное. А метроном и минарет для неё вообще неизвестны;
  • 3.7 млн пар мало для полноценного обучения текстового трансформера для нового языка, не хватает охвата понятий;

Как улучшить?

  • Больше и разнообразнее данных;
  • Заменить текстовый трансформер на уже предобученную языковую модель нужного языка.

Какие репозитории использовались?

Детали

Веса обученной модели можно скачать по ссылке. Код инференса есть в скрипте testing.py

Датасет

Датасет взят с соревнования Yandex Cup 2021, но правилами запрещается использовать его вне соревнования.

Всего там было 5.5 млн картинок, к каждой шло 5 поисковых запросов, после которых люди выбрали эту картинку.

Вместо картинок были ссылки на картинки, мне удалось скачать только 3.7 млн.

Токенайзер для русского языка (и любого другого)

У меня достаточно ограниченный опыт в NLP, поэтому большую часть проблем вызвала именно языковая часть. Я не очень понимала, какой подход может заработать, а какой нет, поэтому остановилась просто на рабочем, если кто-то подскажет, как надо было делать правильно - прошу в личные сообщения :)

В итоге я сделала так:

  • Переписала оригинальный токенайзер так, чтобы он умел в английские буквы и русские;
  • Пришлось убрать обработку utf символов, так как русские слова тогда мапились в набор букв, а не в слово. Никак иначе не удавалось разобраться с этой проблемой;
  • Оставила английские bpe пары, так как в датасете встречались английские слова;
  • Добавила русские bpe пары, нашла файл только у переводчика от фейсбука, но пришлось почистить от дублей.

Трансформер для картинок

Оригинальный ViT-B/32 с замороженными весами.

Обучение

  • Подгружала веса оригинального клипа;
  • Замораживала картиночный трансформер;
  • Текстовый трансформер переопределяла с новым размером словаря;
  • Дальше стандартное обучение clip, где картиночные эмбединги не меняются, а текстовые учатся с нуля;
  • Всего было 30 эпох, на одну эпоху уходило 70-90 минут, всего около 40 часов на A100 80gb c amp.

Ресурсы

Обучение производилось на платформе Yandex Datasphere, по сути - это jupyter lab/notebooks с урезанным bash функционалом, но очень сильными машинками.

Jupyter наложи свой отпечаток, в коде остались ноутбуковские артефакты - например, вынесение аргументов в класс в скрипте, а не передача через командную строку.

К сожалению, у меня не было возможности отладить код на обычном сервере или компьютере, так как ноут слабый, всё падало при загрузке модели.

Но код в том виде, что есть, работает запуском скрипта main.py (если его импортировать в ноутбук, хехе)

Результаты

Метрики по нескольким датасетам можно посмотреть ниже. А сейчас хотелось бы обсудить особенности обученной модели.

correlation

  • В целом, результаты неплохие и все кроме одной картинки имеют наибольшую корреляцию с подходящим текстом, а с остальными маленькую;
  • Но про фото текста модель, увы, не знает ничего, получается, в датасете не было достаточного количества подобных данных;
  • Ракета угадывается на нескольких фото, хотя один раз, вероятно, это не она, что тоже нормально;
  • Самое забавное с фото кота, потому что в надписи присутствует слово фото - и модель, напомню, обученная на поисковых запросах, хорошо знает что такое фото. Для силуэта лошади и текста она выдает низкие корреляции. Силуэт - это рисунок, а про текст она ничего не знает. Если заменить фразу "фото морды полосатого кота" на "морда полосатого кота", то эти корреляции уходят.

Если посмотреть на картинку в начале страницы, то там у модели самые большие проблемы опять с текстом... и с женщиной. Модель видит ракету, почему-то равнину и только потом женщину.

В репозитории и блоге Сбера, откуда я взяла код для этих двух визуализаций, с женщиной всё в порядке. А текст тоже имеет неверные корреляции.

Еще одна картинка с матрицей ошибок по датасету cifar10. Для остальных датасетов визуализации можно найти в папке pics.

cifar10

Самым проблемным оказался кот и совершенно не ясно почему! Остальные недопонимания достаточно понятны, а с котом нет.

Результаты - метрики

Сравнительная табличка результатов работы нескольких алгоритмов, метрика accuracy потому что у Сбера и OpenAI она уже посчитана.

У моей модели и сберовской язык русский (и мы классы могли немного по-разному перевести).

Для OpenAI язык английский, данные из статьи.

Датасет Cifar10 Cifar100 Caltech101 Размер датасета для обучения Время обучения
CLIP Russian (моя модель) 76% 32% 54% 3.7 млн картинок и 5 поисковых запросов к каждой ~40 часов на А100 80gb
Sber ruCLIP* 78% 41% - Предобученная RuGPT3Small и 3 млн пар 5 дней на 16 Tesla GPU V100
OpenAi CLIP** 95% 80% 93% 400 million (image, text) pairs collected from the internet 12 days on 256 V100 GPUs***
  • * Блогпост о ruCLIP от Сбера
  • ** Paper OpenAI
  • *** У оригинального клипа это всё время обучения, в то время как у Сбера и моего клипа - это только дообучение русскому языку

Моя модель +- сравнима с результатами модели Сбера, хоть у меня и не использовалась предобученная модель. Ну и на достижение такого результата затрачено сильно меньше вычислительных ресурсов. На лидерборде соревнования эти можели показывали тоже примерно равный результат.

Названия классов, переведенных на русский, и код инференса можно увидеть в папке testing.

Owner
Valentina Biryukova
Data Scientist, ML/DL Engineer
Valentina Biryukova
A python script to run any executable and pass test cases to it's stdin and compare stdout with correct output.

quera_testcase_checker A python script to run any executable and pass test cases to it's stdin and compare stdout with correct output. proper way to u

k3y1 1 Nov 15, 2021
Here You will Find CodeChef Challenge Solutions

Here You will Find CodeChef Challenge Solutions

kanishk kashyap 1 Sep 03, 2022
An integrated library for checking email if it is registered on social media

An integrated library for checking email if it is registered on social media

Sidra ELEzz 13 Dec 08, 2022
Small projects for python beginners.

Python Mini Projects For Beginners I recently started doing the #100DaysOfCode Challenge in Python. I've used Python before, but I had switched to JS

Sreekesh Iyer 10 Dec 12, 2022
【幼盾】个性化图片徽章服务!

【幼盾】个性化图片徽章服务! 你对方形的徽章感到无聊了吗?想要定制属于自己的开源项目徽章了吗? 快来使用unv-shield吧! unv-shield提供包含自定义图片的徽章服务,可以让你的项目主页更加个性化!

黄巍 130 Dec 23, 2022
Shopping-card - Shopping Card Project With Python

Shopping Card Project this application was built to handle problems with saving

moein98 1 May 06, 2022
emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

Andrew White 13 Dec 11, 2022
Streamlit apps done following data professor's course on YouTube

streamlit-twelve-apps Streamlit apps done following data professor's course on YouTube Español Curso de apps de data science hecho por Data Professor

Federico Bravin 1 Jan 10, 2022
A Python feed reader library.

reader is a Python feed reader library. It aims to allow writing feed reader applications without any business code, and without enforcing a dependenc

266 Dec 30, 2022
DRF magic links

drf-magic-links Installation pip install drf-magic-links Add URL patterns # urls.py

Dmitry Kalinin 1 Nov 07, 2021
Import modules and files straight from URLs.

Import Python code from modules straight from the internet.

Nate 2 Jan 15, 2022
Show Public IP Information In Linux Taskbar

IP Information In Linux Taskbar 📍 How Use IP Script? 🤔 Download ip.py script and save somewhere in your system. Add command applet in your taskbar a

HOP 2 Jan 25, 2022
Algo próximo do ARP

ArpPY Algo parecido com o ARP-Scan. Dependencias O script necessita no mínimo ter o Python versão 3.x instalado e ter o sockets instalado. Executando

Feh's 3 Jan 18, 2022
A general illumination correction method for optical microscopy.

CIDRE About CIDRE is a retrospective illumination correction method for optical microscopy. It is designed to correct collections of images by buildin

Kevin Smith 31 Sep 07, 2022
India's own RPA Platform Python Powered

Welcome to My-AutoPylot , Made in India with ❤️ What is My-AutoPylot? PyBots is an Indian firm based in Vadodara, Gujarat. My-AutoPylot is a product d

PyBots Pvt Ltd 28 Sep 12, 2022
Tools for downloading and processing numerical weather predictions

NWP Tools for downloading and processing numerical weather predictions At the moment, this code is focused on downloading historical UKV NWPs produced

Open Climate Fix 6 Nov 24, 2022
This is an implementation of NeuronJ work with python.

NeuronJ This is an implementation of NeuronJ work with python. NeuronJ is a plug-in for ImageJ that allows you to create and edit neurons masks. Image

Mohammad Mahdi Samei 3 Aug 28, 2022
Python Function to manage users via SCIM

Python Function to manage users via SCIM This script helps you to manage your v2 users. You can add and delete users or groups, add users to groups an

4 Oct 11, 2022
A python script developed to process Windows memory images based on triage type.

Overview A python script developed to process Windows memory images based on triage type. Requirements Python3 Bulk Extractor Volatility2 with Communi

CrowdStrike 245 Nov 24, 2022
Cup Noodle Vending Maching Ordering Queue

Noodle-API Cup Noodle Vending Machine Ordering Queue Install dependencies in virtual environment python3 -m venv

Jonas Kazlauskas 1 Dec 09, 2021