Handwritten Character Recognition using CNN

Overview

Handwritten Character Recognition using CNN

Problem Definition

The main objective of this project is to solve the problem of handwritten character recognition. It is a multi-class image classification problem where the task is to correctly recognize the given handwritten character (the character can be a digit (0-9) or a capital alphabet (A-Z)).

Character recognition, usually abbreviated to optical character recognition or shortened OCR, is the mechanical or electronic translation of images of handwritten, typewritten or printed text (usually captured by a scanner) into machine-editable text. It is an open problem in the fields of computer vision and deep learning. It is a problem which looks easy, but is hard to implement. Even with so many advances in the fields of computer vision and deep learning, 100% accuracy in this problem has not yet been achieved.

This project targets an easier problem than proper handwriting recognition. Here, the objective is to recognize separate characters rather than cursive handwriting.

Since image processing and training neural networks is generally a heavy task, and given the large training set size, parallel computing via CUDA for training the network on GPU has also been explored in this project.

Analysis

The problem is approached using Convolutional Neural Networks (CNNs) and coded in Python. The framework used for CNNs is Pytorch, which is an open-source machine learning library based on the Torch library, used for applications such as computer vision and natural language processing, primarily developed by Facebook's AI Research lab.

2 datasets have been combined to form the training data for this problem. The first one is the MNIST dataset containing 60,000 images for handwritten digits. The second one is a modified version of the NIST Special Database 19, called the Kaggle A-Z dataset (by Sachin Patel). It contains 3,72,450 images of handwritten alphabets (A-Z) in a CSV

format, making it easy to load and pre-process data. Each of these datasets contains grayscale images (1-channel) of shape 28x28.

The model developed follows a CNN architecture with Convolutional layers for feature extraction, Pooling and Dropout layers for regularization (to prevent overfitting) and finally Fully Connected layers for classifying the images. The model has a bit more than 5 Million trainable parameters.

The model uses a Negative Log Likelihood loss function, which is a commonly used loss function for image classification tasks. The optimizer used is Adam, which is known to provide better results than simple optimizers like SGD.

The output of the model is log-probabilities for each class. The maximum of these is taken as the predicted class for the image.

This model is not meant for cursive handwriting. It is meant to classify only single capital English letters (A-Z) and digits (0-9).

To achieve a desirable accuracy, taking advantage of the fact that training data is abundant, a bit complex architecture comprising several Convolutional and Dense layers has been constructed. To minimize training times on this complex architecture, the model has been trained on a GPU via Pytorch’s API for CUDA.

Implementation and Testing

As stated earlier, the project is implemented using Python. The CNN model is built using Pytorch. The input images for training the model are stored in inputs folder. Training script is stored in src folder, while the modules for testing the model have been stored in a Jupyter Notebook stored in notebooks folder. Any custom images to

be tested can be placed inside the custom_images folder. The trained model weights are stored in models folder.

For training, a 6GB Nvidia GeForce GTX 1660Ti GPU was used. The code has been written in such a way that it will automatically detect if CUDA is available and will train on GPU, otherwise it will use CPU.

image

The above code first wraps the data inside a Dataset class, as required by Pytorch Data Loaders. Then, the data is split into training and validation sets (4,00,000 and 32,451 examples respectively). Finally, both the training and validation datasets are passed into DataLoader.

image

Then, the above code defines the CNN architecture used in this project. All the layers have already been described earlier. It also sets the optimizer to Adam and device to CUDA for training the model on GPU.

image

The training process involves first obtaining the current batch via the Pytorch Data Loader(the batch size has been set to 64, i.e. on a single iteration, 64 images will be passed to the model for efficient computation). The batch size can be increased depending upon the RAM and other computing resources available. Then, if CUDA is available, the data (images and the corresponding labels) are transferred to the GPU. The outputs are calculated via the current weights of the network, and the loss is computed via Negative Log Likelihood loss function. Then, a backward step is taken for training by the Backpropagation algorithm. The weights of the model are adjusted according to the loss. The optimizer function used for this is Adam. This process is repeated for 2 epochs over the entire training set (thus a total of 2 x 4,00,000 = 8,00,000 times). Since the training set is huge, the training process is observed to be much faster when run on a GPU than a CPU.

image

For testing on the validation set, again the data is first transferred to GPU (if available). Then the outputs are calculated by passing the input to the model. The model outputs log likelihoods. For getting the output label, the maximum of these likelihoods is taken.

Testing on custom image is a bit more complex, since most modern cameras take high resolution RGB (3-channel) pictures. First, the images are reduced from 3 channels to

1 channel (i.e. from RGB to grayscale). If the images are of a very high resolution (greater than 1500 pixels), then Gaussian Blurring is applied to smoothen the image. Then, the images are reshaped to 28x28 pixels (since the model was trained on 28x28 shape images). Normally, custom images will have a white background (white paper) and black ink, but the model had images with black background and white ink. So, the colours of all images are inverted (so that they have black background with white ink on top). Then, to sharpen the image and remove noise, all pixels with a value above 127 are converted to 255 (white) and below 127 are converted to 0. i.e. the image is converted to pure black and white to remove all noise. Finally, the transformations applied to training images are applied to these images too, i.e. pixel values are divided by 255, normalized and converted to Pytorch tensors. Finally, prediction is made using these tensors. Pytorch Data Loaders have not been used when testing the model on individual images.

image

Original image:

image

Pre-processed image:

image

For best results, the custom images should have less noise (background must be as clean as possible), and the ink used must be thick, preferably a sketch pen instead of a regular gel/ball pen (because thin ink combined with high resolution will lead to a poor quality image when resized to 28x28). The provided custom images were taken from a mobile camera producing images of resolution 3472x4624. The digits were written with a black marker on a whiteboard.

The model achieves an overall training accuracy of 98.2% and validation accuracy of 98%. Since the difference is not significantly large, it is verified that the model is not overfitting. The results can be further improved through techniques like image augmentation, regularization, building a deeper architecture and getting more training data.

Summary

In this project, a CNN model with more than 5 million parameters was successfully trained to recognize single handwritten capital English alphabets (A-Z) and digits (0- 9). The model achieves a satisfactory accuracy on the dataset and performs reasonably well on custom images. Performance on custom images can be improved through various steps described earlier. Further, it was noticed that the training time was significantly shorter when the model was trained on GPU than CPU. This model classifies only single characters. To classify a complete line of text consisting both alphabets and digits (in non-cursive form), this program can be extended via opencv’s functionalities and some pre-built object detection models to detect where the text is written, isolate them and classify each of the characters separately.

References

• Official Pytorch documentation - https://pytorch.org/tutorials/
• Notes from Stanford’s course CS231n - https://cs231n.github.io/
https://www.thinkautomation.com/bots-and-ai/why-is-handwriting-recognition- so-difficult-for-ai/
• OpenCV tutorials - https://opencv-python- tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents _imgproc/py_table_of_contents_imgproc.html

Links to Datasets Used

• MNIST: https://www.kaggle.com/oddrationale/mnist-in-csv
• Modified NIST Special Database 19: https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format

Owner
Mohit Kaushik
Mohit Kaushik
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
Validate and transform various OCR file formats (hOCR, ALTO, PAGE, FineReader)

ocr-fileformat Validate and transform between OCR file formats (hOCR, ALTO, PAGE, FineReader) Installation Docker System-wide Usage CLI GUI API Transf

Universitätsbibliothek Mannheim 152 Dec 20, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

2.4k Jan 08, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約

Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L

Karl Lok (Zhaokai Luo) 901 Dec 11, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE

EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE Introduction This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE. Origin Reposi

Haozheng Li 157 Aug 23, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022