🍞 Create dynamic spreadsheets with arbitrary layouts using Python

Related tags

Miscellaneoustartine
Overview

🍞 tartine

What this is

Exporting a dataframe to a spreadsheet is trivial. But this results in a flat and static spreadsheet where the cells are not linked with each other. This is what this tool addresses: it allows you to programmatically generate dynamic spreadsheets with arbitrary layouts.

Installation

pip install tartine

You can use tartine to generate cells with different libraries. You'll have to install these separately. For instance, run pip install pygsheets to use pygsheets.

Usage example

Fetching some data

Hearthstone is a virtual card game which I'll use as an example. New card sets are released every so often. The list of card sets is available on Wikipedia. It's straightforward to fetch this data with a little bit of pandas judo.

import pandas as pd

card_sets = pd.read_html(
    'https://en.wikipedia.org/wiki/Hearthstone#Card_sets',
    match='Collectible cards breakdown',
)[0]

card_sets = card_sets.rename(columns={
    'Set name (abbreviation)': 'Set name',
    'Removal datefrom Standard': 'Removal date from Standard'
})
card_sets = card_sets[~card_sets['Set name'].str.startswith('Year')]
for col in ['Set name', 'Release date']:
    card_sets[col] = card_sets[col].str.replace(r'\[.+\]', '', regex=True)
card_sets = card_sets[1:-1]
card_sets = card_sets[::-1]  # latest to oldest

print(card_sets.head())
Set name Release type Release date Removal date from Standard Total Common Rare Epic Legendary
United in Stormwind Expansion August 3, 2021 TBA 2023 135 50 35 25 25
Forged in the Barrens with Wailing Caverns Expansion March 30, 2021 TBA 2023 170 66 49 26 29
Core 2021 (Core) Core March 30, 2021 TBA 2022 235 128 55 27 25
Madness at the Darkmoon Faire with Darkmoon Races Expansion November 17, 2020 TBA 2022 170 70 46 25 29
Scholomance Academy (Scholomance) Expansion August 6, 2020 TBA 2022 135 52 35 23 25

Getting started

We'll be dumping data into this public Google Sheet for the sake of example. The pygsheets library can be used to interact with Google Sheets.

import pygsheets

gc = pygsheets.authorize(...)
sh = gc.open_by_key('13DneVfUZQlfnKHN2aeo6LUQwCHnjixJ8bV4x092HKqA')

You use tartine by specifying how you want to spread your data with a template. For this dataset, we want to display the amount of cards per rarity, along with the share each amount represents.

template = [
    "@'Set name'",
    ('Common', 'Rare', 'Epic', 'Legendary'),
    (
        '@Common',
        '@Rare',
        '@Epic',
        '@Legendary',
    ),
    (
        '= @Common / @total',
        '= @Rare / @total',
        '= @Epic / @total',
        '= @Legendary / @total'
    ),
    'total = @Common + @Rare + @Epic + @Legendary'
]

This template contains the four different kinds of expressions which tartine recognises:

  1. 'Common' is a constant.
  2. @Common and @'Set name' are variables.
  3. = @Common / @total is a formula.
  4. total = @Common + @Rare + @Epic + @Legendary is a named formula, which means @total can be used elsewhere.

You can generate pygsheets.Cells by spreading the data according to the above template:

import tartine

cells = []
nrows = 0

for card_set in card_sets.to_dict('records'):
    _cells, _nrows = tartine.spread(
        template=template,
        data=card_set,
        start_row=nrows,
        flavor='pygsheets'
    )

    cells += _cells
    nrows += _nrows

These cells can be sent to the GSheet as so:

wks = sh.worksheet_by_title('v1')
wks.clear()
wks.update_cells(cells)

Adding a header

The GSheet we create in the previous sub-section doesn't contain any column headers. It's trivial to add these, as they're just constants. The tidy thing to do is to turn the template into a dictionary.

template = {
    'Set name': "@'Set name'",
    'Rarity': ('Common', 'Rare', 'Epic', 'Legendary'),
    'Count': (
        '@Common',
        '@Rare',
        '@Epic',
        '@Legendary',
    ),
    'Share': (
        '= @Common / @total',
        '= @Rare / @total',
        '= @Epic / @total',
        '= @Legendary / @total'
    ),
    'Total': 'total = @Common + @Rare + @Epic + @Legendary'
}

cells, nrows = tartine.spread(template.keys(), None, flavor='pygsheets')

for card_set in card_sets.to_dict('records'):
    _cells, _nrows = tartine.spread(
        template=template.values(),
        data=card_set,
        start_row=nrows,
        flavor='pygsheets'
    )

    cells += _cells
    nrows += _nrows

wks = sh.worksheet_by_title('v2')
wks.clear()
wks.update_cells(cells)

Linking more cells

The spreadsheet we built displays the data in a static manner. The share of each rarity is obtained by dividing the amount of cards by the total amount. You'll notice that the total doesn't change if you manually edit any of the amounts. This is because it's calculated from the data, and isn't actually referencing any of the cells. We can change this by using named formulas instead of variables.

template = {
    'Set name': "@'Set name'",
    'Rarity': ('Common', 'Rare', 'Epic', 'Legendary'),
    'Count': (
        'common = @Common',
        'rare = @Rare',
        'epic = @Epic',
        'legendary = @Legendary',
    ),
    'Share': (
        '= @common / @total',
        '= @rare / @total',
        '= @epic / @total',
        '= @legendary / @total'
    ),
    'Total': 'total = @common + @rare + @epic + @legendary'
}

cells, nrows = tartine.spread(template.keys(), None, flavor='pygsheets')

for card_set in card_sets.to_dict('records'):
    _cells, _nrows = tartine.spread(
        template=template.values(),
        data=card_set,
        start_row=nrows,
        flavor='pygsheets'
    )

    cells += _cells
    nrows += _nrows

wks = sh.worksheet_by_title('v3')
wks.clear()
wks.update_cells(cells)

Now you should see the cell values update automatically when you modify any of the amounts.

Cell formatting

The sheet we have displays the data correctly and the cells are linked with each other. Yipee. However, it's a bit ugly, and it would be nice to also format the cells programmatically. Indeed, readability would be improved by adding some colors and formatting the percentages.

The spread function simply returns a list of pygsheet.Cells, so we can do what we want with them. We can set the annotate parameter to True to add notes to each cell. This makes it easier to determine what kind of formatting to apply to each cell.

template = {
    'Set name': ("@'Set name'", '', '', ''),
    'Rarity': ('Common', 'Rare', 'Epic', 'Legendary'),
    'Count': (
        'common = @Common',
        'rare = @Rare',
        'epic = @Epic',
        'legendary = @Legendary',
    ),
    'Share': (
        'common_share = @common / @total',
        'rare_share = @rare / @total',
        'epic_share = @epic / @total',
        'legendary_share = @legendary / @total'
    ),
    'Total': ('total = @common + @rare + @epic + @legendary', '', '', '')
}

GRAY = (245 / 255, 245 / 255, 250 / 255, 1)
BLUE = (65 / 255, 105 / 255, 255 / 255, 1)
PURPLE = (191 / 255, 0 / 255, 255 / 255, 1)
ORANGE = (255 / 255, 140 / 255, 0 / 255, 1)

cells, nrows = tartine.spread(template.keys(), None, flavor='pygsheets')
for cell in cells:
    cell.set_text_format('bold', True)

for i, card_set in enumerate(card_sets.to_dict('records')):
    _cells, _nrows = tartine.spread(
        template=template.values(),
        data=card_set,
        start_row=nrows,
        flavor='pygsheets',
        annotate=True
    )

    if i % 2:
        for cell in _cells:
            cell.color = GRAY

    cells += _cells
    nrows += _nrows

for cell in cells:

    if cell.note and 'share' in cell.note:
        cell.set_number_format(
            format_type= pygsheets.FormatType.PERCENT,
            pattern='##0.00%'
        )

    if cell.note and 'rare' in cell.note:
        cell.set_text_format('foregroundColor', BLUE)
    elif cell.note and 'epic' in cell.note:
        cell.set_text_format('foregroundColor', PURPLE)
    elif cell.note and 'legendary' in cell.note:
        cell.set_text_format('foregroundColor', ORANGE)

    cell.note = None

wks = sh.worksheet_by_title('v4')
wks.clear()
wks.update_cells(cells)

API reference

There is a single entrypoint, which is the spread function. It has the following parameters:

  • template β€” a list of expressions which determines how the cells are layed out.
  • data β€” a dictionary of data to render.
  • start_row β€” the row number where the layout begins. Zero-based.
  • flavor β€” determines what kinds of cells to generate. Only the pygsheets flavor is supported right now.
  • annotate β€” determines whether or not to attach notes to cells which contain named formulas.

The spread function returns the list of cells and the number of rows which the cells span over.

A note on spreadsheets

I always thought spreadsheets sucked. I still think they do in many cases. But they definitely fit the bill for some tasks. This was very much true when I worked at Alan. They really shine when you need to build an interactive app, but can't afford to spend engineering resources. One might even go as far to say that they're underrated. Let me quote this Hackernews comment:

I've mentioned that programmers are far too dismissive of MS Excel. You can achieve a awful lot with Excel: more, even, than some programmers can achieve without it

This is one of the most underrated topics in tech imho. Spreadsheet is probably the pinnacle of how tech could be easily approachable by non tech people, in the "bike for the mind" sense. We came a long way down hill from there when you need an specialist even to come up with a no-code solution to mundane problems.

Sure the tech ecosystem evolved and became a lot more complex from there but I'm afraid the concept of a non-tech person opening a blank file and creating something useful from scratch has been lost along the way.

I also like the idea that spreadsheets can convey information through their layout. For instance, this banana nut bread recipe is a great example of data literacy. It's definitely something you can build with tartine.

Development

git clone https://github.com/MaxHalford/tartine
cd tartine
pip install poetry
poetry install
pytest

License

The MIT License (MIT). Please see the license file for more information.

Owner
Max Halford
Data scientist @alan-eu. PhD in applied machine learning. Kaggle Competitions Master when it was cool. Online machine learning nut. Blogging enthusiast.
Max Halford
Python framework to build apps with the GASP metaphor

Gaspium Python framework to build apps with the GASP metaphor This project is part of the Pyrustic Open Ecosystem. Installation | Documentation | Late

5 Jan 01, 2023
Write complicated anonymous functions other than lambdas in Python.

lambdex allows you to write multi-line anonymous function expression (called a lambdex) in an idiomatic manner.

Xie Jingyi 71 May 19, 2022
eyes is a Public Opinion Mining System focusing on taiwanese forums such as PTT, Dcard.

eyes is a Public Opinion Mining System focusing on taiwanese forums such as PTT, Dcard. Features πŸ”₯ Article monitor: helps you capture the trend at a

Sean 116 Dec 29, 2022
Easytile blender - Simple Blender 2.83 addon for tiling meshes easily

easytile_blender Dead simple, barebones Blender (2.83) addon for placing meshes as tiles. Installation In Blender, go to Edit Preferences Add-ons

Sam Gibson 6 Jul 19, 2022
These are the scripts used for the project of β€˜Assembly of a pan-genome for global cattle reveals missing sequence and novel structural variation, providing new insights into their diversity and evolution history’

script-SV-genotyping These are the scripts used for the project of β€˜Assembly of a pan-genome for global cattle reveals missing sequence and novel stru

2 Aug 26, 2022
System Design Assignments as part of Arpit's System Design Masterclass

System Design Assignments The repository contains a set of problem statements around Software Architecture and System Design as conducted by Arpit's S

Relog 1.1k Jan 09, 2023
Never see escaped bytes in output.

Uniout It makes Python print the object representation in readable chars instead of the escaped string. Example from pprint import pprint lang

Mosky Liu 156 Oct 21, 2022
Pacman - A suite of tools for manipulating debian packages

Overview Repository is a suite of tools for manipulating debian packages. At a h

Pardis Pashakhanloo 1 Feb 24, 2022
A Guide for Feature Engineering and Feature Selection, with implementations and examples in Python.

Feature Engineering & Feature Selection A comprehensive guide [pdf] [markdown] for Feature Engineering and Feature Selection, with implementations and

Yimeng.Zhang 968 Dec 29, 2022
Some basic sorting algos

Sorting-Algos Some basic sorting algos HacktoberFest 2021 This repository consists of mezzo-level projects that undertake a simple task and perform it

Manthan Ghasadiya 7 Dec 13, 2022
Project for viewing the cheapest flight deals from Netherlands to other countries.

Flight_Deals_AMS Project for viewing the cheapest flight deals from Netherlands to other countries.

2 Dec 17, 2022
Course materials for a 3-day seminar "Machine Learning and NLP: Advances and Applications" at New College of Florida

Machine Learning and NLP: Advances and Applications This repository hosts the course materials used for a 3-day seminar "Machine Learning and NLP: Adv

Yoshi Suhara 11 Jun 22, 2022
Repository to store sample python programs for python learning

py Repository to store sample Python programs. This repository is meant for beginners to assist them in their learning of Python. The repository cover

codebasics 5.8k Dec 30, 2022
Integration between the awesome window manager and the firefox web browser.

Integration between the awesome window manager and the firefox web browser.

contribuewwt 3 Feb 02, 2022
A Regex based linter tool that works for any language and works exclusively with custom linting rules.

renag Documentation Available Here Short for Regex (re) Nag (like "one who complains"). Now also PEGs (Parsing Expression Grammars) compatible with py

Ryan Peach 12 Oct 20, 2022
decorator

Decorators for Humans The goal of the decorator module is to make it easy to define signature-preserving function decorators and decorator factories.

Michele Simionato 734 Dec 30, 2022
A repository of study materials related to Think Python 2nd Edition by Allen B. Downey. More information about the book can be found here: https://greenteapress.com/wp/think-python-2e/

Intro-To-Python This content is based on the book Think Python 2nd Edition by Allen B. Downey. More information about the book can be found here: http

Brent Eskridge 63 Jan 07, 2023
A streamlit app for exploring image search results from HuggingPics

title emoji colorFrom colorTo sdk app_file pinned huggingpics-explorer πŸ€— blue red streamlit app.py false huggingpics-explorer A streamlit app for exp

Nathan Raw 4 Sep 10, 2022
Procedural modeling of fruit and sandstorm in Blender (bpy).

SandFruit Procedural modelling of fruit and sandstorm. Created by Adriana Arcia and Maya Boateng. Last updated December 19, 2020 Goal & Inspiration Ou

Adriana Arcia 2 Mar 20, 2022
this is a basic python project that I made using python

this is a basic python project that I made using python. This project is only for practice because my python skills are still newbie.

Elvira Firmansyah 2 Dec 14, 2022