Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Overview

Distributed Grid Descent

An implementation of Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control as described in Appendix B of Working Memory Graphs [Loynd et al., 2019].

Note: This project is a work in progress. Please contact me if you like to contribute and help to develop a fully fledged python library out of it.

Usage

import numpy as np
from dgd import DistributedGridDescent

model = ... # model wrapper
data = {
    "train_data": ...
}

param_grid = {
    "learning_rate":[3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5],
    "optimizer":["adam", "rmsprop"],
    "lr_annealing":[False, 0.95, 0.99],
    "batch_size":[32, 64, 128, 256, 1024],
    "num_linear_layers":[1, 2, 4, 8, 16],
    "num_neurons":[512, 256, 128, 64, 32, 16],
    "dropout":[0.0, 0.1, 0.3, 0.5],
    "l2":[0.0, 0.01, 0.1]
}

dgd = DistributedGridDescent(model, param_grid, metric=np.mean, n_jobs=-1)
dgd.run(data)

print(dgd.best_params_)
df = pd.DataFrame(dgd.results_).set_index("ID").sort_values(by=["metric"],ascending=False)

Examples and Tutorials

See sklearn_example.py, pytorch_example.py, rosenbrock_example.py and tensorflow_example.py in the examples folder for examples of basic usage of dgd.
See rosenbrock_server_example.py for an example of distributed usage.

Strong and weak scaling analysis

scaling_analysis

Algorithm

Input: Set of hyperparameters H, each having a discrete, ordered set of possible values.  
Input: Maximum number of training steps N per run.  
repeat  
    Download any new results.  
    if no results so far then
        Choose a random configuration C from the grid defined by H.
    else
        Identify the run set S with the highest metric.
        Initialize neighborhood B to contain only S.
        Expand B by adding all possible sets whose configurations differ from that of S by one step in exactly one hyperparameter setting.
        Calculate a ceiling M = Count(B) + 1.
        Weight each run set x in B M - Count(x).
        Sample a random run set S' from B according to run set weights.
        Choose configuration C from S'.
    end if
    Perform one training run of N steps using C.
    Calculate the runs Metric.
    Log the result on shared storage.
until terminated by user.

See Appendix B of Loynd et al., 2019 for details.

Owner
Martin
Machine Learning Engineer at heart MSc Student in Computational Science & Engineering :computer: :books: :wrench: @ ETH Zürich :switzerland:
Martin
Benchmark for Robustness Tests of Control Alrogithms

A gym-like classical control benchmark for evaluating the robustnesses of control and reinforcement learning algorithms.

Kim Taekyung 4 Jan 18, 2022
Python package to monitor the power consumption of any algorithm

CarbonAI This project aims at creating a python package that allows you to monitor the power consumption of any python function. Documentation The com

Capgemini Invent France 36 Nov 11, 2022
Visualisation for sorting algorithms. Version 2.0

Visualisation for sorting algorithms v2. Upped a notch from version 1. This program provides animates simple, common and popular sorting algorithms, t

Ben Woo 7 Nov 08, 2022
It is a platform that implements some path planning algorithms.

PathPlanningAlgorithms It is a platform that implements some path planning algorithms. Main dependence: python3.7, opencv4.1.1.26 (for image show) Tip

5 Feb 24, 2022
All Algorithms implemented in Python

The Algorithms - Python All algorithms implemented in Python (for education) These implementations are for learning purposes only. Therefore they may

The Algorithms 150.6k Jan 03, 2023
Primedice like provably fair algorithm

Primedice like provably fair algorithm

Ryu juheon 3 Dec 02, 2022
Implements (high-dimenstional) clustering algorithm

Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)

Eric Elmoznino 5 Dec 27, 2022
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022
Minimal examples of data structures and algorithms in Python

Pythonic Data Structures and Algorithms Minimal and clean example implementations of data structures and algorithms in Python 3. Contributing Thanks f

Keon 22k Jan 09, 2023
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines

py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p

431 Dec 15, 2022
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.

Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy

0 Dec 26, 2021
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The

Jed Ludlow 1 Jan 06, 2022
Programming Foundations Algorithms With Python

Programming-Foundations-Algorithms Algorithms purpose to solve a specific proplem with a sequential sets of steps for instance : if you need to add di

omar nafea 1 Nov 01, 2021
PickMush - A mini study/project on boosting algorithm

PickMush A mini project implementing Boosting Author Shashwat Vaibhav What does it do? Classifies whether Mushroom is edible or is non-edible (binary

Shashwat Vaibahav 3 Nov 08, 2022
Algorithmic Trading with Python

Source code for Algorithmic Trading with Python (2020) by Chris Conlan

Chris Conlan 1.3k Jan 03, 2023
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
Genetic algorithm which evolves aoe2 DE ai scripts

AlphaScripter Use the power of genetic algorithms to evolve AI scripts for Age of Empires II : Definitive Edition. For now this package runs in AOC Us

6 Nov 04, 2022
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
CLI Eight Puzzle mini-game featuring BFS, DFS, Greedy and A* searches as solver algorithms.

🕹 Eight Puzzle CLI Jogo do quebra-cabeças de 8 peças em linha de comando desenvolvido para a disciplina de Inteligência Artificial. Escrito em python

Lucas Nakahara 1 Jun 30, 2021
A collection of Python Scripts made for fun, while exploring Python 🐍

JFF-Python-Scripts A collection of Python Scripts made for fun, while exploring Python 🐍 Inspiration 💡 Many of the programs in this repository are i

Pushkar Patel 16 Oct 07, 2022