Implemented a Google Maps prototype that provides the shortest route in terms of distance

Overview

City-Navigation-AI

Implemented a Google Maps prototype that provides the shortest route in terms of distance, the fastest route, the route with the fewest turns, and a scenic route that avoids roads when provided a source and destination. The algorithms used were DFS, BFS, A*, and Iterative Depth First Search.

Approach to Road trip!

Abstraction:

Set of Valid states: Set of all probable segments which has routes in road-segments file.

Successor Function: Set of all possible segments has route from city1 which consists of parameters such as distance,speedlimit,city1,city2,highwayname
After generating all the successor routes we calculate the heuristic_score and cost_function for specified cost_attribute.

Cost Function: We have four cost functions such as:
  1. Segments:The cost for this is uniform 1 since we have only one edge from city1 to city2.
  2. Distance: The cost for this is the distance between city1 and city2 which is specified in road-segments file.
  3. Time: The cost for this is the time taken to travel from city1 to city2 which is evaluated by distance divided by speed_limit provided in road-segmensts file.
  4. Delivery: The cost for this is the time taken to deliver a product from city1 to city2. This will be evaluated by following conditions.
    • If the speed_limit is above 50 then there is 5% chance of falling out of the truck and the product gets damaged. So, while using this the probability of mistake is calculated as tanh(distance/1000)
    • So the time taken would incrase by two times because he has to go back to start city and pick the product.
    • If the speed_limit is less than 50 then there is no extra time_taken to deliver the product.

Goal State: Reaching end city on shortest possible cost function which will be specified by the user.

Initial State: Initial state is the start city provided by the user.

Heuristic Functions: Finding distance using latitude and longitude from current city to destination city which are provided in city-gps file. For some of the cities, langitudes and longitudes are missing so for the city which is missing we are considering the heuristic score of the previous city and adding to to the current path distance which will be used as current city's heuristic score.

Description of Algorithm:

Implemented using A* algorithm with an heuristic and specified cost function.
  1. Intially by using pandas module loading all the data from specified files to get road-segments and gps details and converting them to lists for better accessing. As mentioned, including the bidirectional condition as well.
  2. Calculating the time taken for all segments and mistakes for delivery cost function and adding to the list.
  3. Adding the start city into the frontier(fringe)
  4. Maintaing explored routes which is empty at the initial point.
  5. Looping till the frontier is not empty:
    1. Pop the latest city using heappop method in heapq module which gives the minheap board which has less f_score.
    2. Checking whether the board popped is the destination city. If yes, the return and print the segments, distance travelled, time taken and delivery.
    3. Otherwise, add this segment to explored list
    4. Generate all the successors segments for this current_city.
      1. For each successor route, calculates the F_score which is the sum of heuristic score and cost function based on cost_attribute.
      2. If the successor route is not in explored and not in frontier, then heappush the board into frontier with f_score of travelled route.

3D extension built off of shapely to make working with geospatial/trajectory data easier in python.

PyGeoShape 3D extension to shapely and pyproj to make working with geospatial/trajectory data easier in python. Getting Started Installation pip The e

Marc Brittain 5 Dec 27, 2022
Geodata extensions for Django REST Framework

Django-Spillway Django and Django REST Framework integration of raster and feature based geodata. Spillway builds on the immensely marvelous Django RE

Brian Galey 62 Jan 04, 2023
Streamlit Component for rendering Folium maps

streamlit-folium This Streamlit Component is a work-in-progress to determine what functionality is desirable for a Folium and Streamlit integration. C

Randy Zwitch 224 Dec 30, 2022
QLUSTER is a relative orbit design tool for formation flying satellite missions and space rendezvous scenarios

QLUSTER is a relative orbit design tool for formation flying satellite missions and space rendezvous scenarios, that I wrote in Python 3 for my own research and visualisation. It is currently unfinis

Samuel Low 9 Aug 23, 2022
Color correction plugin for rasterio

rio-color A rasterio plugin for applying basic color-oriented image operations to geospatial rasters. Goals No heavy dependencies: rio-color is purpos

Mapbox 111 Nov 15, 2022
Client library for interfacing with USGS datasets

USGS API USGS is a python module for interfacing with the US Geological Survey's API. It provides submodules to interact with various endpoints, and c

Amit Kapadia 104 Dec 30, 2022
Summary statistics of geospatial raster datasets based on vector geometries.

rasterstats rasterstats is a Python module for summarizing geospatial raster datasets based on vector geometries. It includes functions for zonal stat

Matthew Perry 437 Dec 23, 2022
Blender addons to make the bridge between Blender and geographic data

Blender GIS Blender minimal version : 2.8 Mac users warning : currently the addon does not work on Mac with Blender 2.80 to 2.82. Please do not report

5.9k Jan 02, 2023
A toolbox for processing earth observation data with Python.

eo-box eobox is a Python package with a small collection of tools for working with Remote Sensing / Earth Observation data. Package Overview So far, t

13 Jan 06, 2022
Read images to numpy arrays

mahotas-imread: Read Image Files IO with images and numpy arrays. Mahotas-imread is a simple module with a small number of functions: imread Reads an

Luis Pedro Coelho 67 Jan 07, 2023
Map Ookla server locations as a Kernel Density Estimation (KDE) geographic map plot.

Ookla Server KDE Plotting This notebook was created to map Ookla server locations as a Kernel Density Estimation (KDE) geographic map plot. Currently,

Jonathan Lo 1 Feb 12, 2022
Python library to visualize circular plasmid maps

Plasmidviewer Plasmidviewer is a Python library to visualize plasmid maps from GenBank. This library provides only the function to visualize circular

Mori Hideto 9 Dec 04, 2022
Digital Earth Australia notebooks and tools repository

Repository for Digital Earth Australia Jupyter Notebooks: tools and workflows for geospatial analysis with Open Data Cube and xarray

Geoscience Australia 335 Dec 24, 2022
Geocode rows in a SQLite database table

Geocode rows in a SQLite database table

Chris Amico 225 Dec 08, 2022
Google maps for Jupyter notebooks

gmaps gmaps is a plugin for including interactive Google maps in the IPython Notebook. Let's plot a heatmap of taxi pickups in San Francisco: import g

Pascal Bugnion 747 Dec 19, 2022
A Python interface between Earth Engine and xarray

eexarray A Python interface between Earth Engine and xarray Description eexarray was built to make processing gridded, mesoscale time series data quic

Aaron Zuspan 159 Dec 23, 2022
WhiteboxTools Python Frontend

whitebox-python Important Note This repository is related to the WhiteboxTools Python Frontend only. You can report issues to this repo if you have pr

Qiusheng Wu 304 Dec 15, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
Software for Advanced Spatial Econometrics

GeoDaSpace Software for Advanced Spatial Econometrics GeoDaSpace current version 1.0 (32-bit) Development environment: Mac OSX 10.5.x (32-bit) wxPytho

GeoDa Center 38 Jan 03, 2023
geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and folium

Qiusheng Wu 2.4k Dec 30, 2022