Bayesian Additive Regression Trees For Python

Overview

BartPy

Build Status

Introduction

BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1].

Reasons to use BART

  • Much less parameter optimization required that GBT
  • Provides confidence intervals in addition to point estimates
  • Extremely flexible through use of priors and embedding in bigger models

Reasons to use the library:

  • Can be plugged into existing sklearn workflows
  • Everything is done in pure python, allowing for easy inspection of model runs
  • Designed to be extremely easy to modify and extend

Trade offs:

  • Speed - BartPy is significantly slower than other BART libraries
  • Memory - BartPy uses a lot of caching compared to other approaches
  • Instability - the library is still under construction

How to use:

There are two main APIs for BaryPy:

  1. High level sklearn API
  2. Low level access for implementing custom conditions

If possible, it is recommended to use the sklearn API until you reach something that can't be implemented that way. The API is easier, shared with other models in the ecosystem, and allows simpler porting to other models.

Sklearn API

The high level API works as you would expect

from bartpy.sklearnmodel import SklearnModel
model = SklearnModel() # Use default parameters
model.fit(X, y) # Fit the model
predictions = model.predict() # Make predictions on the train set
out_of_sample_predictions = model.predict(X_test) # Make predictions on new data

The model object can be used in all of the standard sklearn tools, e.g. cross validation and grid search

from bartpy.sklearnmodel import SklearnModel
model = SklearnModel() # Use default parameters
cross_validate(model)
Extensions

BartPy offers a number of convenience extensions to base BART. The most prominent of these is using BART to predict the residuals of a base model. It is most natural to use a linear model as the base, but any sklearn compatible model can be used

from bartpy.extensions.baseestimator import ResidualBART
model = ResidualBART(base_estimator=LinearModel())
model.fit(X, y)

A nice feature of this is that we can combine the interpretability of a linear model with the power of a trees model

Lower level API

BartPy is designed to expose all of its internals, so that it can be extended and modifier. In particular, using the lower level API it is possible to:

  • Customize the set of possible tree operations (prune and grow by default)
  • Control the order of sampling steps within a single Gibbs update
  • Extend the model to include additional sampling steps

Some care is recommended when working with these type of changes. Through time the process of changing them will become easier, but today they are somewhat complex

If all you want to customize are things like priors and number of trees, it is much easier to use the sklearn API

Alternative libraries

References

[1] https://arxiv.org/abs/0806.3286 [2] http://www.gatsby.ucl.ac.uk/~balaji/pgbart_aistats15.pdf [3] https://arxiv.org/ftp/arxiv/papers/1309/1309.1906.pdf [4] https://cran.r-project.org/web/packages/BART/vignettes/computing.pdf

using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022