This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
Block when attacker want to bypass the limit of request

Block when attacker want to bypass the limit of request

iFanpS 1 Dec 01, 2021
Windows symbol tables for Volatility 3

Windows Symbol Tables for Volatility 3 This repository is the Windows Symbol Table storage for Volatility 3. How to Use $ git clone https://github.com

JPCERT Coordination Center 31 Dec 25, 2022
A site that went kinda viral that lets you put Bernie Sanders in places

Bernie In Places An app that accidentally went viral! Read the story in WIRED here Install First, create a python virtual environment, and install all

310 Aug 22, 2022
Pre-commit hook for upgrading type hints

This is a pre-commit hook configured to automatically upgrade your type hints to the new native types implemented in PEP 585.

snok 54 Nov 14, 2022
Fisherman is a free open source fishing bot written in python.

Fisherman is a free open source fishing bot written in python.

Pure | Cody 33 Jan 29, 2022
Open Source Management System for Botanic Garden Collections.

BotGard 3.0 Open Source Management System for Botanic Garden Collections built and maintained by netzkolchose.de in cooperation with the Botanical Gar

netzkolchose.de 1 Dec 15, 2021
原神抽卡记录导出

原神抽卡记录导出 抽卡记录分析工具 from @笑沐泽 抽卡记录导出工具js版,含油猴脚本可在浏览器导出 注意:我的是python版,带饼图的是隔壁electron版,功能类似 Wik

834 Jan 04, 2023
Python plugin for Krita that assists with making python plugins for Krita

Krita-PythonPluginDeveloperTools Python plugin for Krita that assists with making python plugins for Krita Introducing Python Plugin developer Tools!

18 Dec 01, 2022
XHacks 2021 Startup Track Winner: Be Heard. Educate, Enact, Empower. No voice left behind. (backend)

Be Heard: X Hacks 2021 Submission Educate, Enact, Empower. No voice left behind. Inspiration To say 2020 was an eventful year would be an understateme

3 Jul 14, 2022
Nuclei - Burp Extension allows to run nuclei scanner directly from burp and transforms json results into the issues

Nuclei - Burp Extension Simple extension that allows to run nuclei scanner directly from burp and transforms json results into the issues. Installatio

106 Dec 22, 2022
This is the Quiz that I made using Python Programming Language. This can only run in the Terminal

This is the Quiz that I made using Python Programming Language. This can only run in the Terminal

YOSHITHA RATHNAYAKE 1 Apr 08, 2022
Library to generate random strings from regular expressions.

Xeger Library to generate random strings from regular expressions. To install, type: pip install xeger To use, type: from xeger import Xeger

Colm O'Connor 101 Nov 15, 2022
Functional interface for concurrent futures, including asynchronous I/O.

Futured provides a consistent interface for concurrent functional programming in Python. It wraps any callable to return a concurrent.futures.Future,

A. Coady 11 Nov 27, 2022
A (hopefully) considerably copious collection of classical cipher crackers

ClassicalCipherCracker A (hopefully) considerably copious collection of classical cipher crackers Written in Python3 (and run with PyPy) TODOs Write a

Stanley Zhong 2 Feb 22, 2022
Lookup for interesting stuff in SMB shares

SMBSR - what is that? Well, SMBSR is a python script which given a CIDR/IP/IP_file/HOSTNAME(s) enumerates all the SMB services listening (445) among t

Vincenzo 112 Dec 15, 2022
An example repository for how to generate results using PyBaMM

PyBaMM results This repository provides a template for generating results (for example, for a paper) using PyBaMM Installation Install PyBaMM using a

PyBaMM Team 7 Oct 09, 2022
The Playwright Workshop for TAU: The Homecoming

tau-playwright-workshop This repository contains the instructions and example code for the Playwright workshop for TAU: The Homecoming on December 1,

Pandy Knight 134 Dec 30, 2022
A place where the most basic, basic of python coding exists

python-basics A place where the most basic, basic of python coding exists As you can see, there are four folders and the best order to read is: appeti

Chuqin 2 Oct 05, 2022
Generate Gaussian 09 input files for the rotamers of an input compound.

Rotapy Purpose Generate Gaussian 09 input files for the rotamers of an input compound. Distance to the axis of rotation remains constant throughout th

1 Jul 16, 2021
A dashboard for your code. A build system.

NOTICE: THIS REPO IS NO LONGER UPDATED Changes Changes is a build coordinator and reporting solution written in Python. The project is primarily built

Dropbox 763 Sep 09, 2022