This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
A simple but complete exercise to learning Python

ResourceReservationProject This is a simple but complete exercise to learning Python. Task and flow chart We are going to do a new fork of the existin

2 Nov 14, 2022
pybicyclewheel calulates the required spoke length for bicycle wheels

pybicyclewheel pybicyclewheel calulates the required spoke length for bicycle wheels. (under construcion) - homepage further readings wikipedia bicyc

karl 0 Aug 24, 2022
This is a pretty basic but relatively nice looking Python Pomodoro Timer.

Python Pomodoro-Timer This is a pretty basic but relatively nice looking Pomodoro Timer. Currently its set to a very basic mode, but the funcationalit

EmmHarris 2 Oct 18, 2021
Fastest Semantle solver this side of the Mississippi

semantle Fastest Semantle solver this side of the Mississippi. Roughly 3 average turns to win Measured against (part of) the word2vec-google-news-300

Frank Odom 8 Dec 26, 2022
京东自动入会获取京豆

京东入会领京豆 要求 有一定的电脑知识 or 有耐心爱折腾 需要Chrome(推荐)、Edge(Chromium)、Firefox 操作系统需是Mac(本人没在m1上测试)、Linux(在deepin上测试过)、Windows 安装方法 脚本采用Selenium遍历京东入会有礼界面,由于遍历了200

Vanke Anton 500 Dec 22, 2022
Structured, dependable legos for starknet development.

Structured, dependable legos for starknet development.

Alucard 127 Nov 23, 2022
Projeto job insights - Projeto avaliativo da Trybe do Bloco 32: Introdução à Python

Termos e acordos Ao iniciar este projeto, você concorda com as diretrizes do Código de Ética e Conduta e do Manual da Pessoa Estudante da Trybe. Boas

Lucas Muffato 1 Dec 09, 2021
This is a library to do functional programming in Python.

Fpylib This is a library to do functional programming in Python. Index Fpylib Index Features Intelligents Ranges with irange Lazyness to functions Com

Fabián Vega Alcota 4 Jul 17, 2022
Rick Astley Language is a rick roll oriented, dynamic, strong, esoteric programming language.

Rick Roll Language / Rick Astley Language A rick roll oriented, dynamic, strong, esoteric programming language. Prolegomenon The reasons that I made t

Rick Roll Programming Language 658 Jan 09, 2023
General Purpose Python Library by Techman

General Purpose Python Library by Techman

Jack Hubbard 0 Feb 09, 2022
- Auto join teams teams ( from calendar invite )

Auto Join Teams Meetings Requirements: Python 3.7 or higher Latest Google Chrome This script automatically logins to your account and joins the meetin

Prajin Khadka 10 Aug 20, 2022
[x]it! support for working with todo and check list files in Sublime Text

[x]it! for Sublime Text This Sublime Package provides syntax-highlighting, shortcuts, and auto-completions for [x]it! files. Features Syntax highlight

Jan Heuermann 18 Sep 19, 2022
NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for noisy labels).

Meta-Weight-Net NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The

243 Jan 03, 2023
Change ACLs for QNAP LXD unprivileged container.

qnaplxdunpriv If Advanced Folder Permissions is enabled in QNAP NAS, unprivileged LXD containers won't start. qnaplxdunpriv changes ACLs of some Conta

1 Jan 10, 2022
Protocol Buffers for the Rest of Us

Protocol Buffers for the Rest of Us Motivation protoletariat has one goal: fixing the broken imports for the Python code generated by protoc. Usage He

Phillip Cloud 76 Jan 04, 2023
Its a simple and fun to use application. You can make your own quizes and send the lik of the quiz to your friends.

Quiz Application Its a simple and fun to use application. You can make your own quizes and send the lik of the quiz to your friends. When they would a

Atharva Parkhe 1 Feb 23, 2022
Change your Windows background with this program safely & easily!

Background_Changer Table of Contents: About the Program Features Requirements Preview Credits Reach Me See Also About the Program: You can change your

Sina.f 0 Jul 14, 2022
Types for the Rasterio package

types-rasterio Types for the rasterio package A work in progress Install Not yet published to PyPI pip install types-rasterio These type definitions

Kyle Barron 7 Sep 10, 2021
An OrpheusDL Tidal module

OrpheusDL - Tidal A Tidal module for the OrpheusDL modular archival music program Report Bug · Request Feature Table of content About OrpheusDL - Tida

Daniel 54 Dec 29, 2022
Example code for the book Fluent Python, 1st Edition (O'Reilly, 2015)

Fluent Python, First Edition: example code This repository is archived and will not be updated.

Fluent Python 5.4k Jan 09, 2023