This is the repo for Uncertainty Quantification 360 Toolkit.

Overview

UQ360

Build Status Documentation Status

The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncertainty, as well as capabilities to measure and improve UQ to streamline the development process. We provide a taxonomy and guidance for choosing these capabilities based on the user's needs. Further, UQ360 makes the communication method of UQ an integral part of development choices in an AI lifecycle. Developers can make a user-centered choice by following the psychology-based guidance on communicating UQ estimates, from concise descriptions to detailed visualizations.

The UQ360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

We have developed the package with extensibility in mind. This library is still in development. We encourage the contribution of your uncertianty estimation algorithms, metrics and applications. To get started as a contributor, please join the #uq360-users or #uq360-developers channel of the AIF360 Community on Slack by requesting an invitation here.

Supported Uncertainty Evaluation Metrics

The toolbox provides several standard calibration metrics for classification and regression tasks. This includes Expected Calibration Error (Naeini et al., 2015), Brier Score (Murphy, 1973), etc for classification models. Regression metrics include Prediction Interval Coverage Probability (PICP) and Mean Prediction Interval Width (MPIW) among others. The toolbox also provides a novel operation-point agnostic approaches for the assessment of prediction uncertainty estimates called the Uncertainty Characteristic Curve (UCC). Several metrics and diagnosis tools such as reliability diagram (Niculescu-Mizil & Caruana, 2005) and risk-vs-rejection rate curves are provides which also support analysis by sub-groups in the population to study fairness implications of acting on given uncertainty estimates.

Supported Uncertainty Estimation Algorithms

UQ algorithms can be broadly classified as intrinsic or extrinsic depending on how the uncertainties are obtained from the AI models. Intrinsic methods encompass models that inherently provides an uncertainty estimate along with its predictions. The toolkit includes algorithms such as variational Bayesian neural networks (BNNs) (Graves, 2011), Gaussian processes (Rasmussen and Williams,2006), quantile regression (Koenker and Bassett, 1978) and hetero/homo-scedastic neuralnetworks (Kendall and Gal, 2017) which are models that fall in this category The toolkit also includes Horseshoe BNNs (Ghosh et al., 2019) that use sparsity promoting priors and can lead to better-calibrated uncertainties, especially in the small data regime. An Infinitesimal Jackknife (IJ) based algorithm (Ghosh et al., 2020)), provided in the toolkit, is a perturbation-based approach that perform uncertainty quantification by estimating model parameters under different perturbations of the original data. Crucially, here the estimation only requires the model to be trained once on the unperturbed dataset. For models that do not have an inherent notion of uncertainty built into them, extrinsic methods are employed to extract uncertainties post-hoc. The toolkit provides meta-models (Chen et al., 2019)that can be been used to successfully generate reliable confidence measures (in classification), prediction intervals (in regression), and to predict performance metrics such as accuracy on unseen and unlabeled data. For pre-trained models that captures uncertainties to some degree, the toolbox provides extrinsic algorithms that can improve the uncertainty estimation quality. This includes isotonic regression (Zadrozny and Elkan, 2001), Platt-scaling (Platt, 1999), auxiliary interval predictors (Thiagarajan et al., 2020), and UCC-Recalibration.

Setup

Supported Configurations:

OS Python version
macOS 3.7
Ubuntu 3.7
Windows 3.7

(Optional) Create a virtual environment

A virtual environment manager is strongly recommended to ensure dependencies may be installed safely. If you have trouble installing the toolkit, try this first.

Conda

Conda is recommended for all configurations though Virtualenv is generally interchangeable for our purposes. Miniconda is sufficient (see the difference between Anaconda and Miniconda if you are curious) and can be installed from here if you do not already have it.

Then, to create a new Python 3.7 environment, run:

conda create --name uq360 python=3.7
conda activate uq360

The shell should now look like (uq360) $. To deactivate the environment, run:

(uq360)$ conda deactivate

The prompt will return back to $ or (base)$.

Note: Older versions of conda may use source activate uq360 and source deactivate (activate uq360 and deactivate on Windows).

Installation

Clone the latest version of this repository:

(uq360)$ git clone https://github.ibm.com/UQ360/UQ360

If you'd like to run the examples and tutorial notebooks, download the datasets now and place them in their respective folders as described in uq360/datasets/data/README.md.

Then, navigate to the root directory of the project which contains setup.py file and run:

(uq360)$ pip install -e .

PIP Installation of Uncertainty Quantification 360

If you would like to quickly start using the UQ360 toolkit without cloning this repository, then you can install the uq360 pypi package as follows.

(your environment)$ pip install uq360

If you follow this approach, you may need to download the notebooks in the examples folder separately.

Using UQ360

The examples directory contains a diverse collection of jupyter notebooks that use UQ360 in various ways. Both examples and tutorial notebooks illustrate working code using the toolkit. Tutorials provide additional discussion that walks the user through the various steps of the notebook. See the details about tutorials and examples here.

Citing UQ360

A technical description of UQ360 is available in this paper. Below is the bibtex entry for this paper.

@misc{uq360-june-2021,
      title={Uncertainty Quantification 360: A Holistic Toolkit for Quantifying 
      and Communicating the Uncertainty of AI}, 
      author={Soumya Ghosh and Q. Vera Liao and Karthikeyan Natesan Ramamurthy 
      and Jiri Navratil and Prasanna Sattigeri 
      and Kush R. Varshney and Yunfeng Zhang},
      year={2021},
      eprint={2106.01410},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Acknowledgements

UQ360 is built with the help of several open source packages. All of these are listed in setup.py and some of these include:

License Information

Please view both the LICENSE file present in the root directory for license information.

Owner
International Business Machines
International Business Machines
We are building an open database of COVID-19 cases with chest X-ray or CT images.

🛑 Note: please do not claim diagnostic performance of a model without a clinical study! This is not a kaggle competition dataset. Please read this pa

Joseph Paul Cohen 2.9k Dec 30, 2022
DSG - Source code for Digital Scholarship Grant project.

DSG Source code for Dr. Stephanie Tsang's Digital Scholarship Grant project. Work performed by Mr. Wang Minghao while as her Research Assistant. The s

1 Jan 04, 2022
A Python application that simulates the rolling of a dice, randomly picking one of the 6 faces and then displaying it.

dice-roller-app This is an application developed in Python that shuffles between the 6 faces of a dice, using buttons to shuffle and close the applica

Paddy Costelloe 0 Jul 20, 2021
Render reMarkable documents to PDF

rmrl: reMarkable Rendering Library rmrl is a Python library for rendering reMarkable documents to PDF files. It takes the original PDF document and th

Robert Schroll 95 Dec 25, 2022
reproduces experiments from

Installation To enable importing of modules, from the parent directory execute: pip install -e . To install requirements: python -m pip install requir

Meta Research 15 Aug 11, 2022
flake8 plugin which checks that there is no use of sleep in the code.

flake8-sleep flake8 plugin which checks for use of sleep function. installation Using Pypi: pip install flake8-sleep flake8 codes Code Description SLP

1 Nov 26, 2021
SuperCollider library for Python

SuperCollider library for Python This project is a port of core features of SuperCollider's language to Python 3. It is intended to be the same librar

Lucas Samaruga 65 Dec 22, 2022
A Python application that helps users determine their calorie intake, and automatically generates customized weekly meal and workout plans based on metrics computed using their physical parameters

A Python application that helps users determine their calorie intake, and automatically generates customized weekly meal and workout plans based on metrics computed using their physical parameters

Anam Iqbal 1 Jan 13, 2022
ioztat is a storage load analysis tool for OpenZFS

ioztat is a storage load analysis tool for OpenZFS. It provides iostat-like statistics at an individual dataset/zvol level.

Jim Salter 116 Nov 25, 2022
List of Linux Tools I put on almost every linux / Debian host

Linux-Tools List of Linux Tools I put on almost every Linux / Debian host Installed: geany -- GUI editor/ notepad++ like chkservice -- TUI Linux ser

Stew Alexander 20 Jan 02, 2023
urlwatch is intended to help you watch changes in webpages and get notified of any changes.

urlwatch is intended to help you watch changes in webpages and get notified (via e-mail, in your terminal or through various third party services) of any changes.

Thomas Perl 2.5k Jan 08, 2023
Twikoo自定义表情列表 | HexoPlusPlus自定义表情列表(其实基于OwO的项目都可以用的啦)

Twikoo-Magic 更新说明 2021/1/15 基于2021/1/14 Twikoo 更新1.1.0-beta,所有表情都将以缩写形式(如:[ text ]:)输出。1/14之前本仓库有部分表情text缺失及重复, 导致无法正常使用表情 1/14后的所有表情json列表已全部更新

noionion 90 Jan 05, 2023
The first Python 1v1.lol triggerbot working with colors !

1v1.lol TriggerBot Afin d'utiliser mon triggerbot, vous devez activer le plein écran sur 1v1.lol sur votre naviguateur (quelque-soit ce dernier). Vous

Venax 5 Jul 25, 2022
EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild community 87 Dec 27, 2022
Deis v1, the CoreOS and Docker PaaS: Your PaaS. Your Rules.

This repository (deis/deis) is no longer developed or maintained. The Deis v1 PaaS based on CoreOS Container Linux and Fleet has been replaced by Deis

Deis 6.1k Jan 04, 2023
Polypheny Connector for Python

Polypheny Connector for Python This enables Python programs to access Polypheny databases, using an API that is compliant with the Python Database API

Polypheny 3 Jan 03, 2022
The blancmange curve can be visually built up out of triangle wave functions if the infinite sum is approximated by finite sums of the first few terms.

Blancmange-curve The blancmange curve can be visually built up out of triangle wave functions if the infinite sum is approximated by finite sums of th

Shankar Mahadevan L 1 Nov 30, 2021
Programming labs for 6.S060 (Foundations of Computer Security).

6.S060 Labs This git repository contains the code for the labs in 6.S060. In these labs, you will add a series of security features to a photo-sharing

MIT PDOS 10 Nov 02, 2022
A simple Python script for generating a variety of hashes from safe urandom entropy.

Hashgen A simple Python script for generating a variety of hashes from safe urandom entropy. For whenever you need a random hash (e.g. generating an a

Xanspie 1 Feb 17, 2022
This is the improvised version of Dobot Magician which can be implemented for Dobot M1

pydobotM1 This is the edited driver for Dobot M1 version of the original pydobot library intended for use with the Dobot Magician. Here's what you nee

Shaik Abdullah 2 Jul 11, 2022