FactSumm: Factual Consistency Scorer for Abstractive Summarization

Overview

FactSumm: Factual Consistency Scorer for Abstractive Summarization

GitHub release Apache 2.0 Issues

FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization

Without fine-tuning, you can simply apply a variety of downstream tasks to both the source article and the generated abstractive summary

For example, by extracting fact triples from source articles and generated summaries, we can verify that generated summaries correctly reflect source-based facts ( See image above )

As you can guess, this PoC-ish project uses a lot of pre-trained modules that require super-duper computing resources

So don't blame me, just take it as a concept project 👀


Installation

FactSumm requires Java to be installed in your environment to use Stanford OpenIE. With Java and Python 3, you can install factsumm simply using pip:

pip install factsumm

Or you can install FactSumm from source repository:

git clone https://github.com/huffon/factsumm
cd factsumm
pip install .

Usage

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> article = "Lionel Andrés Messi (born 24 June 1987) is an Argentine professional footballer who plays as a forward and captains both Spanish club Barcelona and the Argentina national team. Often considered as the best player in the world and widely regarded as one of the greatest players of all time, Messi has won a record six Ballon d'Or awards, a record six European Golden Shoes, and in 2020 was named to the Ballon d'Or Dream Team."
>>> summary = "Lionel Andrés Messi (born 24 Aug 1997) is an Spanish professional footballer who plays as a forward and captains both Spanish club Barcelona and the Spanish national team."
>>> factsumm(article, summary, verbose=True)
SOURCE Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 June 1987', 'DATE'), ('Argentine', 'NORP'), ('Spanish', 'NORP'), ('Barcelona',
'GPE'), ('Argentina', 'GPE')]
2: [('one', 'CARDINAL'), ('Messi', 'PERSON'), ('six', 'CARDINAL'), ('European Golden Shoes', 'WORK_OF_ART'), ('2020', 'DATE'),
("the Ballon d'Or Dream Team", 'ORG')]

SUMMARY Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 Aug 1997', 'DATE'), ('Spanish', 'NORP'), ('Barcelona', 'ORG')]

SOURCE Facts
('Lionel Andrés Messi', 'per:origin', 'Argentine')
('Spanish', 'per:date_of_birth', '24 June 1987')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Lionel Andrés Messi', 'per:date_of_birth', '24 June 1987')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

SUMMARY Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

COMMON Facts
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

DIFF Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')

Fact Score: 0.5714285714285714

Answers based on SOURCE (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] <unanswerable>
[Q] When was Lionel Andrés Messi born?  [Pred] 24 June 1987
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Argentine
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

Answers based on SUMMARY (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] Lionel Andrés Messi
[Q] When was Lionel Andrés Messi born?  [Pred] 24 Aug 1997
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Spanish
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

QAGS Score: 0.3333333333333333

SOURCE Triples
('Messi', 'is', 'Argentine')
('Messi', 'is', 'professional')

SUMMARY Triples
('Messi', 'is', 'Spanish')
('Messi', 'is', 'professional')

Triple Score: 0.5

Avg. ROUGE-1: 0.4415584415584415
Avg. ROUGE-2: 0.3287671232876712
Avg. ROUGE-L: 0.4415584415584415

Sub-modules

From here, you can find various way to score Factual Consistency level with Unsupervised methods


Triple-based Module ( closed-scheme )

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.extract_facts(article, summary, verbose=True)
SOURCE Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 June 1987', 'DATE'), ('Argentine', 'NORP'), ('Spanish', 'NORP'), ('Barcelona',
'GPE'), ('Argentina', 'GPE')]
2: [('one', 'CARDINAL'), ('Messi', 'PERSON'), ('six', 'CARDINAL'), ('European Golden Shoes', 'WORK_OF_ART'), ('2020', 'DATE'),
("the Ballon d'Or Dream Team", 'ORG')]

SUMMARY Entities
1: [('Lionel Andrés Messi', 'PERSON'), ('24 Aug 1997', 'DATE'), ('Spanish', 'NORP'), ('Barcelona', 'ORG')]

SOURCE Facts
('Lionel Andrés Messi', 'per:origin', 'Argentine')
('Spanish', 'per:date_of_birth', '24 June 1987')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Lionel Andrés Messi', 'per:date_of_birth', '24 June 1987')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

SUMMARY Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

COMMON Facts
('Spanish', 'org:top_members/employees', 'Lionel Andrés Messi')
('Spanish', 'org:members', 'Barcelona')
('Lionel Andrés Messi', 'per:employee_of', 'Barcelona')
('Barcelona', 'org:top_members/employees', 'Lionel Andrés Messi')

DIFF Facts
('Lionel Andrés Messi', 'per:origin', 'Spanish')
('Lionel Andrés Messi', 'per:date_of_birth', '24 Aug 1997')
('Spanish', 'per:date_of_birth', '24 Aug 1997')

Fact Score: 0.5714285714285714

The triple-based module counts the overlap of fact triples between the generated summary and the source document.


QA-based Module

If you ask questions about the summary and the source document, you will get a similar answer if the summary realistically matches the source document

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.extract_qas(article, summary, verbose=True)
Answers based on SOURCE (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] <unanswerable>
[Q] When was Lionel Andrés Messi born?  [Pred] 24 June 1987
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Argentine
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

Answers based on SUMMARY (Questions are generated from Summary)
[Q] Who is the captain of the Spanish national team?    [Pred] Lionel Andrés Messi
[Q] When was Lionel Andrés Messi born?  [Pred] 24 Aug 1997
[Q] Lionel Andrés Messi is a professional footballer of what nationality?       [Pred] Spanish
[Q] Lionel Messi is a captain of which Spanish club?    [Pred] Barcelona

QAGS Score: 0.3333333333333333

OpenIE-based Module ( open-scheme )

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.extract_triples(article, summary, verbose=True)
SOURCE Triples
('Messi', 'is', 'Argentine')
('Messi', 'is', 'professional')

SUMMARY Triples
('Messi', 'is', 'Spanish')
('Messi', 'is', 'professional')

Triple Score: 0.5

Stanford OpenIE can extract relationships from raw strings. But it's important to note that it's based on the open scheme, not the closed scheme (like Triple-based Module).

For example, from "Obama was born in Hawaii", OpenIE extracts (Obama, born in Hawaii). However, from "Hawaii is the birthplace of Obama", it extracts (Hawaii, is the birthplace of, Obama). In common sense, the triples extracted from the two sentences should be identical, but OpenIE can't recognize that they are the same since it is based on an open scheme.

So the score for this module may be unstable.


ROUGE-based Module

>>> from factsumm import FactSumm
>>> factsumm = FactSumm()
>>> factsumm.calculate_rouge(article, summary)
Avg. ROUGE-1: 0.4415584415584415
Avg. ROUGE-2: 0.3287671232876712
Avg. ROUGE-L: 0.4415584415584415

Simple but effective word-level overlap ROUGE score


Citation

If you apply this library to any project, please cite:

@misc{factsumm,
  author       = {Heo, Hoon},
  title        = {FactSumm: Factual Consistency Scorer for Abstractive Summarization},
  howpublished = {\url{https://github.com/Huffon/factsumm}},
  year         = {2021},
}

References

You might also like...
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

The guide to tackle with the Text Summarization
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Codes for processing meeting summarization datasets AMI and ICSI.
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

 SummerTime - Text Summarization Toolkit for Non-experts
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드
Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Comments
  • BUG: AttributeError: 'str' object has no attribute 'generate'

    BUG: AttributeError: 'str' object has no attribute 'generate'

    when I use the example in README to gain qags score, there has a problem:

    AttributeError Traceback (most recent call last) in () ----> 1 factsumm.extract_qas(article, summary, verbose=True)

    ~/Desktop/factsumm-master/factsumm/factsumm.py in extract_qas(self, source, summary, source_ents, summary_ents, verbose, device) 292 summary_ents = self.ner(summary_lines) 293 --> 294 summary_qas = self.qg(summary_lines, summary_ents) 295 296 source_answers = self.qa(source, summary_qas)

    ~/Desktop/factsumm-master/factsumm/utils/module_question.py in generate_question(sentences, total_entities) 55 ).to(device) 56 ---> 57 outputs = model.generate(**tokens, max_length=64) 58 59 question = tokenizer.decode(outputs[0])

    AttributeError: 'str' object has no attribute 'generate'

    hope you can help me to solve this problem. Thanks!!

    opened by victory-h 0
  • IndexError: index out of range in self

    IndexError: index out of range in self

    In example, when I extend the length of the article and summary , I get this error.

    /opt/anaconda3/envs/LDA0115/lib/python3.6/site-packages/torch/nn/modules/sparse.py in forward(self, input) 124 return F.embedding( 125 input, self.weight, self.padding_idx, self.max_norm, --> 126 self.norm_type, self.scale_grad_by_freq, self.sparse) 127 128 def extra_repr(self) -> str:

    /opt/anaconda3/envs/LDA0115/lib/python3.6/site-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) 1850 # remove once script supports set_grad_enabled 1851 no_grad_embedding_renorm(weight, input, max_norm, norm_type) -> 1852 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 1853 1854

    IndexError: index out of range in self

    opened by victory-h 0
  • Hit Error while using this toolkits

    Hit Error while using this toolkits

    Loading Named Entity Recognition Pipeline... Loading Relation Extraction Pipeline... Fact Score: 0.5714285714285714 Loading Question Generation Pipeline... Loading Question Answering Pipeline... Traceback (most recent call last): File "testcase.py", line 5, in print(factsumm(article, summary, verbose=False)) File "/usr/local/lib/python3.8/dist-packages/factsumm/init.py", line 366, in call qags_score = self.extract_qas( File "/usr/local/lib/python3.8/dist-packages/factsumm/init.py", line 263, in extract_qas source_answers = self.qa(source, summary_qas) File "/usr/local/lib/python3.8/dist-packages/factsumm/utils/level_sentence.py", line 100, in answer_question pred = qa( File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/question_answering.py", line 248, in call return super().call(examples[0], **kwargs) File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/base.py", line 915, in call return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/base.py", line 923, in run_single outputs = self.postprocess(model_outputs, **postprocess_params) File "/usr/local/lib/python3.8/dist-packages/transformers/pipelines/question_answering.py", line 409, in postprocess min_null_score = min(min_null_score, (start_[0] * end_[0]).item()) ValueError: can only convert an array of size 1 to a Python scalar

    while using provided example in README, I meet the Error above ( I use pip install to install this packet and create the python file, copy the example code and run ) pip uninstall and pip reinstall doesn`t help QAQ any suggestion are greatly appreciated!

    opened by Ricardokevins 0
Releases(0.1.2)
  • 0.1.2(May 13, 2021)

    Update BERTScore based Module (See Sec 4.1 from https://arxiv.org/pdf/2005.03754.pdf)

    >>> factsumm = FactSumm()
    >>> factsumm.calculate_bert_score(article, summary)
    BERTScore Score
    Precision: 0.9151781797409058
    Recall: 0.9141832590103149
    F1: 0.9150083661079407
    
    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(May 12, 2021)

    Currently FactSumm supports the following methods:

    • NER + RE based Triple Module
    • QG + QA based Module
    • OpenIE based Triple Module
    • ROUGE based Module
    Source code(tar.gz)
    Source code(zip)
Owner
devfon
Who wants to change the world slowly
devfon
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022