HiSim - House Infrastructure Simulator

Related tags

MiscellaneousHiSim
Overview

Forschungszentrum Juelich Logo

HiSim - House Infrastructure Simulator

HiSim is a Python package for simulation and analysis of household scenarios using modern components as alternative to fossil fuel based ones. This package integrates load profiles generation of electricity consumption, heating demand, electricity generation, and strategies of smart strategies of modern components, such as heat pump, battery, electric vehicle or thermal energy storage. HiSim is a package under development by Forschungszentrum Jülich und Hochschule Emden/Leer.

Clone repository

To clone this repository, enter the following command to your terminal:

git clone https://github.com/FZJ-IEK3-VSA/HiSim.git

Virtual Environment

Before installing hisim, it is recommended to set up a python virtual environment. Let hisimvenv be the name of virtual environment to be created. For Windows users, setting the virtual environment in the path \hisim is done with the command line:

python -m venv hisimvenv

After its creation, the virtual environment can be activated in the same directory:

hisimvenv\Scripts\activate

For Linux/Mac users, the virtual environment is set up and activated as follows:

virtual hisimvenv
source hisimvenv/bin/activate

Alternatively, Anaconda can be used to set up and activate the virtual environment:

conda create -n hisimvenv python=3.8
conda activate hisimvenv

With the successful activation, hisim is ready to be locally installed.

Install package

After setting up the virtual environment, install the package to your local libraries:

python setup.py install

Run Simple Examples

Run the python interpreter in the hisim/examples directory with the following command:

python ../hisim/hisim.py examples first_example

This command executes hisim.py on the setup function first_example implemented in the file examples.py that is stored in hisim/examples. The same file contains another setup function that can be used: second_example. The results can be visualized under directory results created under the same directory where the script with the setup function is located.

Run Basic Household Example

The directory hisim\examples also contains a basic household configuration in the script basic_household.py. The first setup function (basic_household_explicit) can be executed with the following command:

python ../hisim/hisim.py basic_household basic_household_explicit

The system is set up with the following elements:

  • Occupancy (Residents' Demands)
  • Weather
  • Photovoltaic System
  • Building
  • Heat Pump

Hence, photovoltaic modules and the heat pump are responsible to cover the electricity the thermal energy demands as best as possible. As the name of the setup function says, the components are explicitly connected to each other, binding inputs correspondingly to its output sequentially. This is difference then automatically connecting inputs and outputs based its similarity. For a better understanding of explicit connection, proceed to session IO Connecting Functions.

Generic Setup Function Walkthrough

The basic structure of a setup function follows:

  1. Set the simulation parameters (See SimulationParameters class in hisim/hisim/component.py)
  2. Create a Component object and add it to Simulator object
    1. Create a Component object from one of the child classes implemented in hisim/hisim/components
      1. Check if Component class has been correctly imported
    2. If necessary, connect your object's inputs with previous created Component objects' outputs.
    3. Finally, add your Component object to Simulator object
  3. Repeat step 2 while all the necessary components have been created, connected and added to the Simulator object.

Once you are done, you can run the setup function according to the description in the simple example run.

Package Structure

The main program is executed from hisim/hisim/hisim.py. The Simulator(simulator.py) object groups Components declared and added from the setups functions. The ComponentWrapper(simulator.py) gathers together the Components inside an Simulator Object. The Simulator object performs the entire simulation under the function run_all_timesteps and stores the results in a Python pickle data.pkl in a subdirectory of hisim/hisim/results named after the executed setup function. Plots and the report are automatically generated from the pickle by the class PostProcessor (hisim/hisim/postprocessing/postprocessing.py).

Component Class

A child class inherits from the Component class in hisim/hisim/component.py and has to have the following methods implemented:

  • i_save_state: updates previous state variable with the current state variable
  • i_restore_state: updates current state variable with the previous state variable
  • i_simulate: performs a timestep iteration for the Component
  • i_doublecheck: checks if the values are expected throughout the iteration

These methods are used by Simulator to execute the simulation and generate the results.

List of Component children

Theses classes inherent from Component (component.py) class and can be used in your setup function to customize different configurations. All Component class children are stored in hisim/hisim/components directory. Some of these classes are:

  • RandomNumbers (random_numbers.py)
  • SimpleController (simple_controller.py)
  • SimpleSotrage (simple_storage.py)
  • Transformer (transformer.py)
  • PVSystem (pvs.py)
  • CHPSystem (chp_system.py)
  • Csvload (csvload.py)
  • SumBuilderForTwoInputs (sumbuilder.py)
  • SumBuilderForThreeInputs (sumbuilder.py)
  • ToDo: more components to be added

Connecting Input/Outputs

Let my_home_electricity_grid and my_appliance be Component objects used in the setup function. The object my_apppliance has an output ElectricityOutput that has to be connected to an object ElectricityGrid. The object my_home_electricity_grid has an input ElectricityInput, where this connection takes place. In the setup function, the connection is performed with the method connect_input from the Simulator class:

my_home_electricity_grid.connect_input(input_fieldname=my_home_electricity_grid.ElectricityInput,
                                       src_object_name=my_appliance.ComponentName,
                                       src_field_name=my_appliance.ElectricityOutput)

Configuration Automator

A configuration automator is under development and has the goal to reduce connections calls among similar components.

Post Processing

After the simulator runs all time steps, the post processing (postprocessing.py) reads the persistent saved results, plots the data and generates a report.

License

MIT License

Copyright (C) 2020-2021 Noah Pflugradt, Vitor Zago, Frank Burkard, Tjarko Tjaden, Leander Kotzur, Detlef Stolten

You should have received a copy of the MIT License along with this program. If not, see https://opensource.org/licenses/MIT

About Us

Institut TSA

We are the Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3) belonging to the Forschungszentrum Jülich. Our interdisciplinary institute's research is focusing on energy-related process and systems analyses. Data searches and system simulations are used to determine energy and mass balances, as well as to evaluate performance, emissions and costs of energy systems. The results are used for performing comparative assessment studies between the various systems. Our current priorities include the development of energy strategies, in accordance with the German Federal Government’s greenhouse gas reduction targets, by designing new infrastructures for sustainable and secure energy supply chains and by conducting cost analysis studies for integrating new technologies into future energy market frameworks.

Contributions and Users

This software is developed together with the Hochschule Emden/Leer inside the project "Piegstrom".

Acknowledgement

This work was supported by the Helmholtz Association under the Joint Initiative "Energy System 2050 A Contribution of the Research Field Energy".

Helmholtz Logo

Owner
FZJ-IEK3
Institute of Energy and Climate Research - Techno-economic Systems Analysis (IEK-3)
FZJ-IEK3
Nicotine+: A graphical client for the SoulSeek peer-to-peer system

Nicotine+ Nicotine+ is a graphical client for the Soulseek peer-to-peer file sharing network. Nicotine+ aims to be a pleasant, Free and Open Source (F

940 Jan 03, 2023
Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Relatório dos procedimentos executados e resultados obtidos. Objetivos Treinar um modelo para classificação de SPAM usando o dataset train_data. Class

André Mediote 1 Feb 02, 2022
Monitoring of lake dynamics

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

10 Jun 23, 2022
A dot matrix rendered using braille characters.

⣿ dotmatrix A dot matrix rendered using braille characters. Description This library provides class called Matrix which represents a dot matrix that c

Tim Fischer 25 Dec 12, 2022
Randomly distribute members by groups making sure that every sector is represented

Generate Groups Randomly distribute members by groups making sure that every sector is represented The Scenario Imagine that you have a large group of

Jorge Gomes 1 Oct 22, 2021
RISE allows you to instantly turn your Jupyter Notebooks into a slideshow

RISE RISE allows you to instantly turn your Jupyter Notebooks into a slideshow. No out-of-band conversion is needed, switch from jupyter notebook to a

Damian Avila 3.4k Jan 04, 2023
Free APN For Python

Free APN For Python

XENZI GANZZ 4 Apr 22, 2022
kodi addon 115网盘

plugin.video.115 kodi addon 115网盘 插件,需要kodi 18以上版本,原码播放需配合 https://github.com/feelfar/115proxy-for-kodi 使用 安装 HEAD 由于release包尚未释出,可直接下载源代码zip包

109 Dec 29, 2022
Search and Find Jobs in Ethiopia

✨ EthioJobs ✨ Search and Find Jobs in Ethiopia Easy start critical warning Use pycharm No vscode No sublime No Vim No nothing when you want to use

Abdimk 12 Nov 09, 2022
🗽 Like yarn outdated/upgrade, but for pip. Upgrade all your pip packages and automate your Python Dependency Management.

pipupgrade The missing command for pip Table of Contents Features Quick Start Usage Basic Usage Docker Environment Variables FAQ License Features Upda

Achilles Rasquinha 529 Dec 31, 2022
C++ Environment InitiatorVisual Studio Code C / C++ Environment Initiator

Visual Studio Code C / C++ Environment Initiator Latest Version : v 1.0.1(2021/11/08) .exe link here About : Visual Studio Code에서 C/C++환경을 MinGW GCC/G

Junho Yoon 2 Dec 19, 2021
Hacktoberfest 2021 contribution repository✨

🎃 HacktoberFest-2021 🎃 Repository for Hacktoberfest Note: Although, We are actively focusing on Machine Learning, Data Science and Tricky Python pro

Manjunatha Sai Uppu 42 Dec 11, 2022
Multitrack exporter for OP-Z

Underbridge for OP-Z Multitrack exporter Description Exports patterns and projects individual audio tracks to seperate folders for use in your DAW. Py

Thomas Herrmann 71 Dec 25, 2022
Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store.

Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store. I used the dataset given to write a program that ranks these places.

Mahmoud 1 Dec 11, 2021
Data derived from the OpenType specification

This package currently provides the opentypespec.tags module, which exports FEATURE_TAGS, SCRIPT_TAGS, LANGUAGE_TAGS and BASELINE_TAGS dictionaries, representing data from the Layout Tag Registry

Simon Cozens 4 Dec 01, 2022
Euler 021 Py - Euler Problem 021 solved in Python

Euler_021_Py Euler Problem 021 solved in Python Let d(n) be defined as the sum o

Ariel Tynan 1 Jan 24, 2022
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
Basic code and description for GoBigger challenge 2021.

GoBigger Challenge 2021 en / 中文 Challenge Description 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent Decision Intelligence Challeng

OpenDILab 183 Dec 29, 2022
Data Orchestration Platform

Table of contents What is DOP Design Concept A Typical DOP Orchestration Flow Prerequisites - Run in Docker For DOP Native Features For DBT Instructio

Datatonic 61 Mar 04, 2022
MySQL Connectivity based project. Contains various functions of a Store-Management-System

An Intermediate Level Python - MySQL Connectivity based project. Contains various functions of a Store-Management-System.

Yash Wadhvani 2 Nov 21, 2022