Domain Connectivity Analysis Tools to analyze aggregate connectivity patterns across a set of domains during security investigations

Overview

DomainCAT (Domain Connectivity Analysis Tool)

Domain Connectivity Analysis Tool is used to analyze aggregate connectivity patterns across a set of domains during security investigations

This project was a collaborative effort between myself and Matthew Pahl

Introduction

When analyzing pivots during threat hunting, most people approach it from the perspective of “what can a single pivot tell you?” But often actors will set their domains up to use commodity hosting infrastructure, so the number of entities associated with a given pivot are so big they don’t really give you any useful information.

This is where DomainCAT can help. Actors make decisions around domain registration and hosting options when setting up their malicious infrastructure. These can be considered behavioral choices.

  • What registrar(s) do they use?
  • What TLDs do they prefer?
  • What hosting provider(s) do they like?
  • What TLS cert authority do they use?

All of these decisions, together, makeup part of that actor’s infrastructure tools, tactics and procedures (TTPs), and we can analyze them as a whole to look for patterns across a set of domains.

DomainCAT is a tool written in Jupyter Notebooks, a web-based interactive environment that lets you combine text, code, data, and interactive visualizations into your threat hunting toolbelt. The tool analyzes aggregate connectivity patterns across a set of domains looking at every pivot for every domain, asking; what are the shared pivots across these domains, how many shared pivots between each domain, do they have a small pivot count or a really large one? All of these aspects are taken into consideration as it builds out a connectivity graph that models how connected all the domains in an Iris search are to each other.

Example Visualizations:

3D visualization of domain to domain connections based on shared infrastructure, registration and naming patterns

SegmentLocal

2D visualization of domain to domain connection

domain_graph2d.png

DomainCat Tutorial

Click here for the DomainCAT Tutorial documentation

Installation Steps: Docker (recommended)

Note: building the container takes a bit of RAM to compile the resources for the jupyterlab-plotly extension. Bump up your RAM in Docker preferences to around 4Gb while building the container. Then afterwards you can drop it back down to your normal level to run the container

Steps:

Clone the git repository locally

$ git clone https://github.com/DomainTools/DomainCAT.git

Change directory to the domaincat folder

$ cd domaincat

Build the jupyter notebook container

$ docker build --tag domaincat .

Run the jupyter notebook

$ docker run -p 9999:9999 --name domaincat domaincat

Installation Steps: Manual (cross your fingers)

Note: this project uses JupyterLab Widgets, which requires nodejs >= 12.0.0 to be installed...which is on you

Steps:

Clone the git repository locally

$ git clone https://github.com/DomainTools/DomainCAT.git

Change directory to the domaincat folder

$ cd domaincat

Install python libraries

$ pip install -r requirements.txt

JupyterLab widgets extension

$ jupyter labextension install [email protected] --no-build
$ jupyter labextension install @jupyter-widgets/jupyterlab-manager --no-build
$ jupyter labextension install [email protected] --no-build
$ jupyter lab build

Run the jupyter notebook

$ jupyter lab

Plotly Bug: in the 2D visualization of the domain graph there is a weird bug in Plotly Visualization library where if your cursor is directly over the center of a node, the node's tool tip with the domain's name will disappear and if you click the node, it unselects all nodes. So only click on a node if you see it's tool tip

Owner
DomainTools
DomainTools
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023
Jupyter notebook and datasets from the pandas Q&A video series

Python pandas Q&A video series Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas. Jupyter Note

Kevin Markham 2k Jan 05, 2023
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
The visual framework is designed on the idea of module and implemented by mixin method

Visual Framework The visual framework is designed on the idea of module and implemented by mixin method. Its biggest feature is the mixins module whic

LEFTeyes 9 Sep 19, 2022
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
Mathematical learnings with Lean, for those of us who wish we knew more of both!

Lean for the Inept Mathematician This repository contains source files for a number of articles or posts aimed at explaining bite-sized mathematical c

Julian Berman 8 Feb 14, 2022
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022
A central task in drug discovery is searching, screening, and organizing large chemical databases

A central task in drug discovery is searching, screening, and organizing large chemical databases. Here, we implement clustering on molecular similarity. We support multiple methods to provide a inte

NVIDIA Corporation 124 Jan 07, 2023
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
Python scripts to manage Chia plots and drive space, providing full reports. Also monitors the number of chia coins you have.

Chia Plot, Drive Manager & Coin Monitor (V0.5 - April 20th, 2021) Multi Server Chia Plot and Drive Management Solution Be sure to ⭐ my repo so you can

338 Nov 25, 2022
A data visualization curriculum of interactive notebooks.

A data visualization curriculum of interactive notebooks, using Vega-Lite and Altair. This repository contains a series of Python-based Jupyter notebooks.

UW Interactive Data Lab 1.2k Dec 30, 2022
flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

249 Jan 06, 2023
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Yata is a fast, simple and easy Data Visulaization tool, running on python dash

Yata is a fast, simple and easy Data Visulaization tool, running on python dash. The main goal of Yata is to provide a easy way for persons with little programming knowledge to visualize their data e

Cybercreek 3 Jun 28, 2021
An animation engine for explanatory math videos

Powered By: An animation engine for explanatory math videos Hi there, I'm Zheer 👋 I'm a Software Engineer and student!! 🌱 I’m currently learning eve

Zaheer ud Din Faiz 2 Nov 04, 2021
Interactive plotting for Pandas using Vega-Lite

pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra

Altair 342 Oct 26, 2022