Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
Stinky ID - A stable pluggable Telegram userbot + Voice & Video Call music bot, based on Telethon

Ultroid - UserBot A stable pluggable Telegram userbot + Voice & Video Call music

Riyan.rz 1 Jan 03, 2022
Python client for Vektonn

Python client for Vektonn Installation Install the latest version: $ pip install vektonn Install specific version: $ pip install vektonn==1.2.3 Upgrad

Vektonn 16 Dec 09, 2022
QR-Code-Grabber - A python script that allows a person to create a qr code token grabber

Qr Code Grabber Description Un script python qui permet a une personne de creer

5 Jun 28, 2022
Webb-Tracker-Bot - This is a discord bot that displays current progress of the James Webb Space Telescope.

Webb-Tracker-Bot - This is a discord bot that displays current progress of the James Webb Space Telescope.

Copperbotte 1 Jan 05, 2022
Mini Tool to lovers of debe from eksisozluk (one of the most famous website -reffered as collaborative dictionary like reddit- in Turkey) for pushing debe (Most Liked Entries of Yesterday) to kindle every day via Github Actions.

debe to kindle Mini Tool to lovers of debe from eksisozluk (one of the most famous website -refered as collaborative dictionary like reddit- in Turkey

11 Oct 11, 2022
Send Informative, Concise Slack Notifications With Minimal Effort

slack-templates Send Informative, Concise Slack Notifications With Minimal Effort slack-templates Slack Integration Available Templates Usage Report t

9 Nov 03, 2022
A python package that allows you to place automated trades using the TD Ameritrade API.

Template Repo Table of Contents Overview Setup Usage Support These Projects Overview Setup Setup - Requirements Install:* For this particular project,

Alex Reed 4 Jan 25, 2022
Telegram Group Manager Bot Written In Python Using Pyrogram.

──「𝐂𝐡𝐢𝐤𝐚 𝐅𝐮𝐣𝐢𝐰𝐚𝐫𝐚」── Telegram Group Manager Bot Written In Python Using Pyrogram. Deploy To Heroku NOTE: I'm making this note to whoever

Wahyusaputra 3 Feb 12, 2022
This script will detect changes in your session using Discords built in Gateway.

Detect Session Gateway This script will detect changes in your session using Discords built in Gateway. What does this log? Discord build version Oper

Omega 5 Dec 18, 2021
Instagram-Reports is a tool made to ban any scam or bad person

ABOUT TOOL : Instagram-Reports is a tool made to ban any scam or bad person. Installation : sudo apt-get update -y sudo apt-get upgrade -y apt insta

Evan Al Mahmud Irfan ථ 1 Dec 20, 2021
The official wrapper for spyse.com API, written in Python, aimed to help developers build their integrations with Spyse.

Python wrapper for Spyse API The official wrapper for spyse.com API, written in Python, aimed to help developers build their integrations with Spyse.

Spyse 15 Nov 22, 2022
Discord CTF helper bot for CyberErudites

Eruditus - CTF helper bot Eruditus - CTF helper bot About Eruditus is a Discord CTF helper bot built with Python, it was initially designed to be used

Hafidh 34 Dec 30, 2022
Access Undenied parses AWS AccessDenied CloudTrail events, explains the reasons for them, and offers actionable remediation steps. Open-sourced by Ermetic.

Access Undenied on AWS Access Undenied parses AWS AccessDenied CloudTrail events, explains the reasons for them, and offers actionable fixes. Access U

Ermetic 204 Jan 02, 2023
Converts a text file of songs to a playlist on your Spotify account.

Playlist Converter Convert a text file of songs to a playlist on your Spotify account. Create your playlists faster instead of manually searching for

Priya Aggarwal 18 Dec 21, 2022
trading strategy for freqtrade crypto bot it base on CDC-ActionZone

ft-action-zone trading strategy for freqtrade crypto bot it base on CDC-ActionZone Indicator by piriya33 Clone The Repository if you just clone this r

Miwtoo 17 Aug 13, 2022
“ Hey there 👋 I'm Daisy „ AI based Advanced Group Management Bot Suit For All Your Needs ❤️.. Source Code of @Daisyxbot

Project still under heavy development Everything will be changed in the release “ Hey there 👋 I'm Daisy „ AI based Advanced telegram Group Management

TeamDaisyX 43 Nov 12, 2022
数字货币BTC量化交易系统-实盘行情服务器,虚拟币自动炒币-火币API-币安交易所-量化交易-网格策略。趋势跟踪策略,最简源码,可在线回测,一键部署,可定制的比特币量化交易框架,3年实盘检验!

huobi_intf 提供火币网的实时行情服务器(支持火币网所有交易对的实时行情),自带API缓存,可用于实盘交易和模拟回测。 行情数据,是一切量化交易的基础,可以获取1min、60min、4hour、1day等数据。数据能进行缓存,可以在多个币种,多个时间段查询的时候,查询速度依然很快。 服务框架

dev 258 Sep 20, 2021
An API wrapper for Discord written in Python.

HCord A fork of discord.py project. HCord is a modern, easy to use, feature-rich, and async ready API wrapper for Discord written in Python. Key Featu

HCord 0 Jul 30, 2022
A simple discord bot based on python

A simple discord bot based on python

SENPAI LEGEND 2 Jul 24, 2022
Easily update resume to naukri with one click

NAUKRI RESUME AUTO UPDATER I am using poetry for dependencies. you can check or change in data.txt file for username and password Resume file must be

Rahul.p 1 May 02, 2022