A pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database

Overview

https://raw.githubusercontent.com/ClearcodeHQ/pytest-postgresql/master/logo.png

pytest-postgresql

Latest PyPI version Wheel Status Supported Python Versions License

What is this?

This is a pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database. It allows you to specify fixtures for PostgreSQL process and client.

How to use

Warning

Tested on PostgreSQL versions >= 10. See tests for more details.

Install with:

pip install pytest-postgresql

You will also need to install psycopg. See its installation instructions.

Plugin contains three fixtures:

  • postgresql - it's a client fixture that has functional scope. After each test it ends all leftover connections, and drops test database from PostgreSQL ensuring repeatability. This fixture returns already connected psycopg connection.
  • postgresql_proc - session scoped fixture, that starts PostgreSQL instance at it's first use and stops at the end of the tests.
  • postgresql_noproc - a noprocess fixture, that's connecting to already running postgresql instance. For example on dockerized test environments, or CI providing postgresql services

Simply include one of these fixtures into your tests fixture list.

You can also create additional postgresql client and process fixtures if you'd need to:

from pytest_postgresql import factories

postgresql_my_proc = factories.postgresql_proc(
    port=None, unixsocketdir='/var/run')
postgresql_my = factories.postgresql('postgresql_my_proc')

Note

Each PostgreSQL process fixture can be configured in a different way than the others through the fixture factory arguments.

Sample test

def test_example_postgres(postgresql):
    """Check main postgresql fixture."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

If you want the database fixture to be automatically populated with your schema there are two ways:

  1. client fixture specific
  2. process fixture specific

Both are accepting same set of possible loaders:

  • sql file path
  • loading function import path (string)
  • actual loading function

That function will receive host, port, user, dbname and password kwargs and will have to perform connection to the database inside. However, you'll be able to run SQL files or even trigger programmatically database migrations you have.

Client specific loads the database each test

postgresql_my_with_schema = factories.postgresql(
    'postgresql_my_proc',
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)

Warning

This way, the database will still be dropped each time.

The process fixture performs the load once per test session, and loads the data into the template database. Client fixture then creates test database out of the template database each test, which significantly speeds up the tests.

postgresql_my_proc = factories.postgresql_proc(
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)
pytest --postgresql-populate-template=path.to.loading_function --postgresql-populate-template=path.to.other:loading_function --postgresql-populate-template=path/to/file.sql

The loading_function from example will receive , and have to commit that. Connecting to already existing postgresql database --------------------------------------------------

Some projects are using already running postgresql servers (ie on docker instances). In order to connect to them, one would be using the postgresql_noproc fixture.

postgresql_external = factories.postgresql('postgresql_noproc')

By default the postgresql_noproc fixture would connect to postgresql instance using 5432 port. Standard configuration options apply to it.

These are the configuration options that are working on all levels with the postgresql_noproc fixture:

Configuration

You can define your settings in three ways, it's fixture factory argument, command line option and pytest.ini configuration option. You can pick which you prefer, but remember that these settings are handled in the following order:

  • Fixture factory argument
  • Command line option
  • Configuration option in your pytest.ini file
Configuration options
PostgreSQL option Fixture factory argument Command line option pytest.ini option Noop process fixture Default
Path to executable executable --postgresql-exec postgresql_exec
/usr/lib/postgresql/13/bin/pg_ctl
host host --postgresql-host postgresql_host yes 127.0.0.1
port port --postgresql-port postgresql_port yes (5432) random
postgresql user user --postgresql-user postgresql_user yes postgres
password password --postgresql-password postgresql_password yes  
Starting parameters (extra pg_ctl arguments) startparams --postgresql-startparams postgresql_startparams
-w
Postgres exe extra arguments (passed via pg_ctl's -o argument) postgres_options --postgresql-postgres-options postgresql_postgres_options
 
Log filename's prefix logsprefix --postgresql-logsprefix postgresql_logsprefix
 
Location for unixsockets unixsocket --postgresql-unixsocketdir postgresql_unixsocketdir
$TMPDIR
Database name dbname --postgresql-dbname postgresql_dbname yes, however with xdist an index is being added to name, resulting in test0, test1 for each worker. test
Default Schema either in sql files or import path to function that will load it (list of values for each) load --postgresql-load postgresql_load yes  
PostgreSQL connection options options --postgresql-options postgresql_options yes  

Example usage:

  • pass it as an argument in your own fixture

    postgresql_proc = factories.postgresql_proc(
        port=8888)
  • use --postgresql-port command line option when you run your tests

    py.test tests --postgresql-port=8888
    
  • specify your port as postgresql_port in your pytest.ini file.

    To do so, put a line like the following under the [pytest] section of your pytest.ini:

    [pytest]
    postgresql_port = 8888

Examples

Populating database for tests

With SQLAlchemy

This example shows how to populate database and create an SQLAlchemy's ORM connection:

Sample below is simplified session fixture from pyramid_fullauth tests:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.pool import NullPool
from zope.sqlalchemy import register


@pytest.fixture
def db_session(postgresql):
    """Session for SQLAlchemy."""
    from pyramid_fullauth.models import Base

    connection = f'postgresql+psycopg2://{postgresql.info.user}:@{postgresql.info.host}:{postgresql.info.port}/{postgresql.info.dbname}'

    engine = create_engine(connection, echo=False, poolclass=NullPool)
    pyramid_basemodel.Session = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
    pyramid_basemodel.bind_engine(
        engine, pyramid_basemodel.Session, should_create=True, should_drop=True)

    yield pyramid_basemodel.Session

    transaction.commit()
    Base.metadata.drop_all(engine)


@pytest.fixture
def user(db_session):
    """Test user fixture."""
    from pyramid_fullauth.models import User
    from tests.tools import DEFAULT_USER

    new_user = User(**DEFAULT_USER)
    db_session.add(new_user)
    transaction.commit()
    return new_user


def test_remove_last_admin(db_session, user):
    """
    Sample test checks internal login, but shows usage in tests with SQLAlchemy
    """
    user = db_session.merge(user)
    user.is_admin = True
    transaction.commit()
    user = db_session.merge(user)

    with pytest.raises(AttributeError):
        user.is_admin = False

Note

See the original code at pyramid_fullauth's conftest file. Depending on your needs, that in between code can fire alembic migrations in case of sqlalchemy stack or any other code

Maintaining database state outside of the fixtures

It is possible and appears it's used in other libraries for tests, to maintain database state with the use of the pytest-postgresql database managing functionality:

For this import DatabaseJanitor and use its init and drop methods:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    janitor = DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
    janitor.init()
    yield psycopg2.connect(
        dbname="my_test_database",
        user=postgresql_proc.user,
        password="secret_password",
        host=postgresql_proc.host,
        port=postgresql_proc.port,
    )
    janitor.drop()

or use it as a context manager:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    with DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
        yield psycopg2.connect(
            dbname="my_test_database",
            user=postgresql_proc.user,
            password="secret_password",
            host=postgresql_proc.host,
            port=postgresql_proc.port,
        )

Note

DatabaseJanitor manages the state of the database, but you'll have to create connection to use in test code yourself.

You can optionally pass in a recognized postgresql ISOLATION_LEVEL for additional control.

Note

See DatabaseJanitor usage in python's warehouse test code https://github.com/pypa/warehouse/blob/5d15bfe/tests/conftest.py#L127

Connecting to Postgresql (in a docker)

To connect to a docker run postgresql and run test on it, use noproc fixtures.

docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres

This will start postgresql in a docker container, however using a postgresql installed locally is not much different.

In tests, make sure that all your tests are using postgresql_noproc fixture like that:

postgresql_in_docker = factories.postgresql_noproc()
postresql = factories.postgresql("postgresql_in_docker", db_name="test")


def test_postgres_docker(postresql):
    """Run test."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

And run tests:

pytest --postgresql-host=172.17.0.2 --postgresql-password=mysecretpassword

Using a common database initialisation between tests

If you've got several tests that require common initialisation, you need to define a load and pass it to your custom postgresql process fixture:

import pytest_postgresql.factories
def load_database(**kwargs):
    db_connection: connection = psycopg2.connect(**kwargs)
    with db_connection.cursor() as cur:
        cur.execute("CREATE TABLE stories (id serial PRIMARY KEY, name varchar);")
        cur.execute(
            "INSERT INTO stories (name) VALUES"
            "('Silmarillion'), ('Star Wars'), ('The Expanse'), ('Battlestar Galactica')"
        )
        db_connection.commit()

postgresql_proc = factories.postgresql_proc(
    load=[load_database],
)

postgresql = factories.postgresql(
    "postgresql_proc",
)

You can also define your own database name by passing same dbname value to both factories.

The way this will work is that the process fixture will populate template database, which in turn will be used automatically by client fixture to create a test database from scratch. Fast, clean and no dangling transactions, that could be accidentally rolled back.

Same approach will work with noproces fixture, while connecting to already running postgresql instance whether it'll be on a docker machine or running remotely or locally.

Owner
Clearcode
Software house with a passion for technology. We specialize in building enterprise-grade adtech, martech and analytics platforms.
Clearcode
Testing Calculations in Python, using OOP (Object-Oriented Programming)

Testing Calculations in Python, using OOP (Object-Oriented Programming) Create environment with venv python3 -m venv venv Activate environment . venv

William Koller 1 Nov 11, 2021
Checks for a 200 response from your subdomain list.

Check for available subdomains Written in Python, this terminal based application looks for a 200 response from the subdomain list you've provided. En

Sean 1 Nov 03, 2021
Show, Edit and Tell: A Framework for Editing Image Captions, CVPR 2020

Show, Edit and Tell: A Framework for Editing Image Captions | arXiv This contains the source code for Show, Edit and Tell: A Framework for Editing Ima

Fawaz Sammani 76 Nov 25, 2022
A Proof of concept of a modern python CLI with click, pydantic, rich and anyio

httpcli This project is a proof of concept of a modern python networking cli which can be simple and easy to maintain using some of the best packages

Kevin Tewouda 17 Nov 15, 2022
HTTP load generator, ApacheBench (ab) replacement, formerly known as rakyll/boom

hey is a tiny program that sends some load to a web application. hey was originally called boom and was influenced from Tarek Ziade's tool at tarekzia

Jaana Dogan 14.9k Jan 07, 2023
Nokia SR OS automation

Nokia SR OS automation Nokia is one of the biggest vendors of the telecommunication equipment, which is very popular in the Service Provider segment.

Karneliuk.com 7 Jul 23, 2022
masscan + nmap 快速端口存活检测和服务识别

masnmap masscan + nmap 快速端口存活检测和服务识别。 思路很简单,将masscan在端口探测的高速和nmap服务探测的准确性结合起来,达到一种相对比较理想的效果。 先使用masscan以较高速率对ip存活端口进行探测,再以多进程的方式,使用nmap对开放的端口进行服务探测。 安

starnightcyber 75 Dec 19, 2022
UX Analytics & A/B Testing

UX Analytics & A/B Testing

Marvin EDORH 1 Sep 07, 2021
Simple frontend TypeScript testing utility

TSFTest Simple frontend TypeScript testing utility. Installation Install webpack in your project directory: npm install --save-dev webpack webpack-cli

2 Nov 09, 2021
HTTP client mocking tool for Python - inspired by Fakeweb for Ruby

HTTPretty 1.0.5 HTTP Client mocking tool for Python created by Gabriel Falcão . It provides a full fake TCP socket module. Inspired by FakeWeb Github

Gabriel Falcão 2k Jan 06, 2023
WrightEagle AutoTest (Has been updated by Cyrus team members)

Autotest2d WrightEagle AutoTest (Has been updated by Cyrus team members) Thanks go to WrightEagle Members. Steps 1- prepare start_team file. In this s

Cyrus Soccer Simulation 2D Team 3 Sep 01, 2022
A pure Python script to easily get a reverse shell

easy-shell A pure Python script to easily get a reverse shell. How it works? After sending a request, it generates a payload with different commands a

Cristian Souza 48 Dec 12, 2022
Python package to easily work with selenium and manage tabs effectively.

Simple Selenium The aim of this package is to quickly get started with working with selenium for simple browser automation tasks. Installation Install

Vishal Kumar Mishra 1 Oct 27, 2021
A feature flipper for Django

README Django Waffle is (yet another) feature flipper for Django. You can define the conditions for which a flag should be active, and use it in a num

952 Jan 06, 2023
Integration layer between Requests and Selenium for automation of web actions.

Requestium is a Python library that merges the power of Requests, Selenium, and Parsel into a single integrated tool for automatizing web actions. The

Tryolabs 1.7k Dec 27, 2022
Faker is a Python package that generates fake data for you.

Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in yo

Daniele Faraglia 15.2k Jan 01, 2023
hyppo is an open-source software package for multivariate hypothesis testing.

hyppo (HYPothesis Testing in PythOn, pronounced "Hippo") is an open-source software package for multivariate hypothesis testing.

neurodata 137 Dec 18, 2022
This repository has automation content to test Arista devices.

Network tests automation Network tests automation About this repository Requirements Requirements on your laptop Requirements on the switches Quick te

Netdevops Community 17 Nov 04, 2022
A small faсade for the standard python mocker library to make it user-friendly

unittest-mocker Inspired by the pytest-mock, but written from scratch for using with unittest and convenient tool - patch_class Installation pip insta

Vertliba V.V. 6 Jun 10, 2022
tidevice can be used to communicate with iPhone device

tidevice can be used to communicate with iPhone device

Alibaba 1.8k Jan 08, 2023