code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

Overview

DeepCAD

This repository provides source code for our paper:

DeepCAD: A Deep Generative Network for Computer-Aided Design Models

Rundi Wu, Chang Xiao, Changxi Zheng

ICCV 2021 (camera ready version coming soon)

We also release the Onshape CAD data parsing scripts here: onshape-cad-parser.

Prerequisites

  • Linux
  • NVIDIA GPU + CUDA CuDNN
  • Python 3.7, PyTorch 1.5+

Dependencies

Install python package dependencies through pip:

$ pip install -r requirements.txt

Install pythonocc (OpenCASCADE) by conda:

$ conda install -c conda-forge pythonocc-core=7.5.1

Data

Download data from here (backup) and extract them under data folder.

  • cad_json contains the original json files that we parsed from Onshape and each file describes a CAD construction sequence.
  • cad_vec contains our vectorized representation for CAD sequences, which serves for fast data loading. They can also be obtained using dataset/json2vec.py. TBA.
  • Some evaluation metrics that we use requires ground truth point clouds. Run:
    $ cd dataset
    $ python json2pc.py --only_test

The data we used are parsed from Onshape public documents with links from ABC dataset. We also release our parsing scripts here for anyone who are interested in parsing their own data.

Training

See all hyper-parameters and configurations under config folder. To train the autoencoder:

$ python train.py --exp_name newDeepCAD -g 0

For random generation, further train a latent GAN:

# encode all data to latent space
$ python test.py --exp_name newDeepCAD --mode enc --ckpt 1000 -g 0

# train latent GAN (wgan-gp)
$ python lgan.py --exp_name newDeepCAD --ae_ckpt 1000 -g 0

The trained models and experment logs will be saved in proj_log/newDeepCAD/ by default.

Testing and Evaluation

Autoencoding

After training the autoencoder, run the model to reconstruct all test data:

$ python test.py --exp_name newDeepCAD --mode rec --ckpt 1000 -g 0

The results will be saved inproj_log/newDeepCAD/results/test_1000 by default in the format of h5 (CAD sequence saved in vectorized representation).

To evaluate the results:

$ cd evaluation
# for command accuray and parameter accuracy
$ python evaluate_ae_acc.py --src ../proj_log/newDeepCAD/results/test_1000
# for chamfer distance and invalid ratio
$ python evaluate_ae_cd.py --src ../proj_log/newDeepCAD/results/test_1000 --parallel

Random Generation

After training the latent GAN, run latent GAN and the autoencoder to do random generation:

# run latent GAN to generate fake latent vectors
$ python lgan.py --exp_name newDeepCAD --ae_ckpt 1000 --ckpt 200000 --test --n_samples 9000 -g 0

# run the autoencoder to decode into final CAD sequences
$ python test.py --exp_name newDeepCAD --mode dec --ckpt 1000 --z_path proj_log/newDeepCAD/lgan_1000/results/fake_z_ckpt200000_num9000.h5 -g 0

The results will be saved inproj_log/newDeepCAD/lgan_1000/results by default.

To evaluate the results by COV, MMD and JSD:

$ cd evaluation
$ sh run_eval_gen.sh ../proj_log/newDeepCAD/lgan_1000/results/fake_z_ckpt200000_num9000_dec 1000 0

The script run_eval_gen.sh combines collect_gen_pc.py and evaluate_gen_torch.py. You can also run these two files individually with specified arguments.

Pre-trained models

Download pretrained model from here (backup) and extract it under proj_log. All testing commands shall be able to excecuted directly, by specifying --exp_name=pretrained when needed.

Visualization and Export

We provide scripts to visualize CAD models and export the results to .step files, which can be loaded by almost all modern CAD softwares.

$ cd utils
$ python show.py --src {source folder} # visualize with opencascade
$ python export2step.py --src {source folder} # export to step format

Script to create CAD modeling sequence in Onshape according to generated outputs: TBA.

Acknowledgement

We would like to thank and acknowledge referenced codes from DeepSVG, latent 3d points and PointFlow.

Cite

Please cite our work if you find it useful:

@article{wu2021deepcad,
title={Deepcad: A deep generative network for computer-aided design models},
author={Wu, Rundi and Xiao, Chang and Zheng, Changxi},
journal={arXiv preprint arXiv:2105.09492},
year={2021}
}
Owner
Rundi Wu
Incoming PhD student at Columbia University
Rundi Wu
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
Here use convulation with sobel filter from scratch in opencv python .

Here use convulation with sobel filter from scratch in opencv python .

Tamzid hasan 2 Nov 11, 2021
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network

FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a

GeorgeJoe 171 Aug 04, 2022
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

Masao Taketani 52 Nov 11, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
Generic framework for historical document processing

dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty

Digital Humanities Laboratory 343 Dec 24, 2022
Document Layout Analysis

Eynollah Document Layout Analysis Introduction This tool performs document layout analysis (segmentation) from image data and returns the results as P

QURATOR-SPK 198 Dec 29, 2022
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
✌️Using this you can control your PC/Laptop volume by Hand Gestures created with Python.

Hand Gesture Volume Controller ✋ Hand recognition 👆 Finger recognition 🔊 you can decrease and increase volume Demo Code Firstly I have created a Mod

Abbas Ataei 19 Nov 17, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
OpenGait is a flexible and extensible gait recognition project

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En

MaybeShewill-CV 1000 Dec 27, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
Contextual speed detection for python

Speed Prediction using Optical Flow and 2D CNN About the challenge: Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the s

Mahimana Bhatt 2 Dec 16, 2021